導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.129.25.104
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 速通机器学习 的原始碼
←
速通机器学习
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- |<center><img src=https://www0.kfzimg.com/sw/kfz-cos/kfzimg/7445133/4908ea8e3795b666_s.jpg width="260"></center> <small>[https://book.kongfz.com/476106/7389058276 来自 孔夫子网 的图片]</small> |} 《'''速通机器学习'''》,卢菁 著,出版社: 电子工业出版社。 电子工业出版社成立于1982年10月,是工业和信息化部直属的[[科技]]与教育出版社,每年出版新书2400余种,音像和电子出版物400余种,期刊8种,出版物内容涵盖了信息科技的各个专业分支以及工业技术、经济管理、大众生活、少儿[[科普]]<ref>[https://www.douban.com/group/topic/116170316/ 100部科普经典名著],豆瓣,2018-04-26</ref>等领域,综合出版能力位居全国出版行业前列<ref>[https://www.phei.com.cn/module/wap/about.jsp 关于我们],电子工业出版社</ref>。 ==内容简介== 本书从传统的机器学习,如线性回归、逻辑回归、朴素贝叶斯、支持向量机、集成学习,到前沿的深度学习和神经网络,如DNN、CNN、BERT、ResNet等,对人工智能技术进行零基础讲解,内容涵盖数学原理、公式推导、图表展示、企业应用案例。 本书面向初中级读者,能帮助读者迅速掌握机器学习技术的相关概念及原理。本书内容结合作者多年的科研工作经验,理论和实践并重,对科研、学习、面试等均有帮助。 ==目录== 第1章 [[数据]]的量化和特征提取 1 1.1 机器学习概述 1 1.2 特征提取 2 1.3 向量距离计算 6 第2章 线性回归 12 2.1 线性回归的基本概念 13 2.2 损失函数和梯度下降法 14 2.3 训练集和测试集 19 2.4 多项式回归 21 2.5 线性回归的高级技巧 23 2.5.1 特征敏感性研究 23 2.5.2 损失函数的选择 24 第3章 [[逻辑]]回归 27 3.1 逻辑回归的基本原理 28 3.2 交叉熵和KL距离 32 3.2.1 KL距离 32 3.2.2 梯度下降法 34 3.2.3 上采样和下采样 36 3.3 线性不可分及其解决方案 38 3.4 L1正则和L2正则 39 3.5 分类模型的评价标准 43 3.6 逻辑回归的特征提升技巧 47 3.6.1 特征归一化 47 3.6.2 特征分段 49 3.7 深入理解损失函数和逻辑函数 51 第4章 因子分解模型 55 4.1 基本原理和特征交叉 55 4.1.1 基本原理 55 4.1.2 特征交叉简化 58 4.1.3 参数学习 59 4.2 因子分解模型和矩阵分解 61 第5章 经典分类模型 63 5.1 支持向量机 63 5.1.1 支持向量机的基本原理 63 5.1.2 支持向量机和逻辑回归的比较 68 5.2 核方法 70 5.2.1 核函数 70 5.2.2 核函数在支持向量机中的应用 72 5.3 朴素贝叶斯 73 5.3.1 朴素贝叶斯原理 73 5.3.2 朴素贝叶斯的参数估计 76 5.4 维数灾难 78 5.5 奥卡姆剃刀定律的应用 82 5.6 经验风险、期望风险和结构风险 83 第6章 无监督学习 85 6.1 K-Means聚类 86 6.1.1 K-Means算法的基本原理 86 6.1.2 改进型K-Means算法 88 6.1.3 K-Means算法和逻辑回归的结合应用 91 6.2 主题模型 92 6.2.1 LDA模型的原理 93 6.2.2 LDA模型的训练 95 第7章 集成学习 100 7.1 决策树 100 7.2 随机森林 105 7.3 GBDT 108 第8章 深度神经网络 113 8.1 BP神经网络的基本原理 113 8.2 多分类与Softmax函数 118 8.3 梯度下降法和链式法则 120 8.4 度量学习 125 第9章 神经网络调优 130 9.1 激活函数选型 131 9.2 权重初始化 135 9.3 改进型梯度下降法 137 9.3.1 随机梯度下降法 138 9.3.2 鞍点问题 141 9.3.3 梯度下降法的优化 142 9.4 过拟合解决方案 145 9.4.1 正则化 145 9.4.2 Dropout 146 9.4.3 提前终止 147 9.4.4 批标准化和层标准化 148 9.4.5 Shortcut 151 9.4.6 标签平滑 151 9.4.7 人工制造数据 152 第10章 自然语言处理 154 10.1 自然语言处理模型 154 10.2 one-hot编码和embedding技术 156 10.3 哈夫曼树和负采样 161 10.3.1 哈夫曼树 161 10.3.2 负采样 163 10.4 Word2vec的应用 165 10.5 fastText模型的原理及应用 166 第11章 卷积神经网络 169 11.1 卷积层和池化层 169 11.2 卷积神经网络在图像处理中的应用 177 11.3 卷积神经网络中的批标准化 179 11.4 TextCNN的原理及应用 180 第12章 深入卷积层 185 12.1 1 × 1卷积 185 12.2 小尺寸卷积 186 12.3 宽度卷积和Inception 187 12.4 Depthwise卷积和Pointwise卷积 189 12.5 特征通道加权卷积 193 第13章 循环神经网络和LSTM模型 196 13.1 循环神经网络模型详解 196 13.1.1 循环神经网络的基本原理 196 13.1.2 循环神经网络存在的一些问题 199 13.2 LSTM模型详解 202 13.3 LSTM模型的改进和应用 206 13.4 CTC算法 208 第14章 Attention模型和Transformer模型 210 14.1 Attention模型详解 210 14.1.1 注意力机制的基本原理 210 14.1.2 Attention模型概述 212 14.1.3 Attention模型的改进形式 214 14.1.4 Self-Attention模型 215 14.1.5 Multi-Head Attention模型 217 14.2 Transformer模型原理 219 14.3 BERT模型及应用 221 ==参考文献== [[Category:040 類書總論;百科全書總論]]
返回「
速通机器学习
」頁面