開啟主選單
求真百科
搜尋
檢視 假设检验 的原始碼
←
假设检验
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #008080" align= center| '''<big>假设检验</big> ''' |- | [[File:Faedab64034f78f0f5665c0778310a55b2191cd0.jpg|缩略图|居中|[https://i01piccdn.sogoucdn.com/ae413be0808ed686 原图链接][https://pic.sogou.com/pics?ie=utf8&p=40230504&interV=kKIOkrELjbgQmLkElbYTkKIMkrELjbkRmLkElbkTkKIRmLkEk78TkKILkbHjMz%20PLEDmK6IPjf19z%2F19z6RLzO1H1qR7zOMTMkjYKKIPjflBz%20cGwOVFj%20lGmTbxFE4ElKJ6wu981qR7zOM%3D_844253275&query=%E9%AB%98%E7%A3%81%E5%AF%BC%E7%8E%87%E6%9D%90%E6%96%99 来自搜狗的图片]]] |- | style="background: #008080" align= center| |- | align= light| |} '''假设检验'''(hypothesis testing),又称统计假设检验,是用来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。显著性检验是假设检验中最常用的一种方法,也是一种最基本的统计推断形式,其基本原理是先对总体的特征做出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。常用的假设检验方法有Z检验、t检验、卡方检验、F检验等。 =='''简介'''== 假设检验的基本思想是“小概率事件”原理,其统计推断方法是带有某种概率性质的反证法。小概率思想是指小概率事件在一次试验中基本上不会发生。反证法思想是先提出检验假设,再用适当的统计方法,利用小概率原理,确定假设是否成立。即为了检验一个假设H0是否正确,首先假定该假设H0正确,然后根据样本对假设H0做出接受或拒绝的决策。如果样本观察值导致了“小概率事件”发生,就应拒绝假设H0,否则应接受假设H0假设检验中所谓“小概率事件”,并非逻辑中的绝对矛盾,而是基于人们在实践中广泛采用的原则,即小概率事件在一次试验中是几乎不发生的,但概率小到什么程度才能算作“小概率事件”,显然,“小概率事件”的概率越小,否定原假设H0就越有说服力,常记这个概率值为α(0<α<1),称为检验的显著性水平。对于不同的问题,检验的显著性水平α不一定相同,一般认为,事件发生的概率小于0.1、0.05或0.01等,即“小概率事件”。 =='''评价'''== t检验是英国统计学家Cosset在1908年以笔名“" student”发表的,因此亦称 student t检验( Student' s t test)。t检验是用t分布理论来推断差异发生的[[概率]],从而判定两总体均数的差异是否有统计学意义,主要用于样本含量较小(如n<60),总体标准差σ未知,呈正态分布的计量资料。若样本含量较大(如n>60),或样本含量虽小,但总体标准差σ已知,则可采用u检验(亦称:z检验)。但在统计软件中,无论样本量大小,均采用t检验进行统计分析t检验和u检验的适用条件:①样本来自正态总体或近似正态总体;②两样本总体方差相等,即具有方差齐性。在实际应用时,如与上述条件略有偏离,对结果亦不会有太大影响;③两组样本应相互独立。根据比较对象的不同,t检验又分为单样本t检验、配对t检验和两独立样本t检验。<ref>[https://zhuanlan.zhihu.com/p/171756902 假设检验]搜狗</ref> =='''参考文献'''== [[Category:300 科學總論]]
返回「
假设检验
」頁面