開啟主選單
求真百科
搜尋
檢視 数据分析 的原始碼
←
数据分析
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
'''数据分析'''是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成[[结论]]而对数据加以详细研究和概括总结的过程。 数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际[[操作]]成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。<ref>[https://zhidao.baidu.com/question/1714285464699443860.html?fr=bks0000&word=%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90 数据分析流程]百度知道</ref> {| class="wikitable" style="float:right; margin: -10px 0px 10px 20px; text-align:left" |<center><img src="https://img0.baidu.com/it/u=1829976742,3839089002&fm=253&fmt=auto&app=138&f=JPEG?w=486&h=500 " width="180"></center><small>[]</small> |} == 目的 == 数据分析的目的是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,从而找出所研究对象的内在规律。在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动。数据分析是有组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场[[调研]]到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如设计人员在开始一个新的设计以前,要通过广泛的设计调查,分析所得数据以判定设计方向,因此数据分析在工业设计中具有极其重要的地位。 == 分析方法 == 1、列表法 将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系;此外还要求在标题栏中注明各个量的名称、符号、数量级和[[单位]]等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。 2、作图法 作图法可以最醒目地表达各个物理量间的变化关系。从图线上可以简便求出实验需要的某些结果,还可以把某些复杂的函数关系,通过一定的变换用图形表示出来。 图表和图形的生成方式主要有两种:手动制表和用程序自动生成,其中用程序制表是通过相应的软件,例如SPSS、Excel、MATLAB等。将调查的数据输入程序中,通过对这些软件进行操作,得出最后结果,结果可以用图表或者图形的方式表现出来。图形和图表可以直接反映出调研结果,这样大大节省了设计师的时间,帮助设计者们更好地分析和预测市场所需要的产品,为进一步的设计做[[铺垫]]。同时这些分析形式也运用在产品销售统计中,这样可以直观地给出最近的产品销售情况,并可以及时地分析和预测未来的市场销售情况等。所以数据分析法在工业设计中运用非常广泛,而且是极为重要的。 == 分析工具 == 使用Excel自带的数据分析功能可以完成很多专业软件才有的数据统计、分析,其中包括:直方图、相关系数、协方差、各种概率分布、抽样与动态模拟、总体均值判断,均值推断、线性、非线性回归、多元回归分析、移动平均等内容。在商业智能领域Cognos、Style Intelligence、Microstrategy、Brio、BO和Oracle以及国内产品如Yonghong Z-Suite BI套件等。 == 分析步骤 == 数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步骤: 1、探索性数据分析:当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。 2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。 3、推断分析:通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。 == 数据分析过程 == 数据分析过程的主要活动由识别信息需求、收集数据、[[分析数据]]、评价并改进数据分析的有效性组成。 识别需求 识别信息需求是确保数据分析过程有效性的首要条件,可以为收集数据、分析数据提供清晰的目标。识别信息需求是管理者的职责管理者应根据决策和过程控制的需求,提出对信息的需求。就过程控制而言,管理者应识别需求要利用那些信息支持评审过程输入、过程输出、资源配置的合理性、过程活动的优化方案和过程异常变异的发现。 收集数据 有目的的收集数据,是确保数据分析过程有效的基础。组织需要对收集数据的内容、渠道、方法进行策划。策划时应考虑: ①将识别的需求转化为具体的要求,如评价供方时,需要收集的数据可能包括其过程能力、测量系统不确定度等相关数据; ②明确由谁在何时何处,通过何种渠道和方法收集数据; ③记录表应便于使用; ④采取有效措施,防止数据丢失和虚假数据对系统的干扰。 分析数据 分析数据是将收集的数据通过加工、整理和分析、使其转化为信息,通常用方法有: 老七种工具,即排列图、因果图、分层法、调查表、散布图、直方图、控制图; 新七种工具,即关联图、系统图、矩阵图、KJ法、计划评审技术、PDPC法、矩阵数据图。 过程改进 数据分析是质量管理体系的基础。组织的管理者应在适当时,通过对以下问题的分析,评估其有效性: ①提供决策的信息是否充分、可信,是否存在因信息不足、失准、滞后而导致决策失误的问题; ②信息对持续改进质量管理体系、过程、产品所发挥的作用是否与期望值一致,是否在产品实现过程中有效运用数据分析; ③收集数据的目的是否明确,收集的数据是否真实和充分,信息渠道是否[[畅通]]; ④数据分析方法是否合理,是否将风险控制在可接受的范围; ⑤数据分析所需资源是否得到保障。 ==参考文献== {{Reflist}} [[Category:300 科學類]]
此頁面使用了以下模板:
Template:Main other
(
檢視原始碼
)
Template:Reflist
(
檢視原始碼
)
模块:Check for unknown parameters
(
檢視原始碼
)
返回「
数据分析
」頁面