開啟主選單
求真百科
搜尋
檢視 紫外线杀菌 的原始碼
←
紫外线杀菌
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #FF2400" align= center| '''<big>紫外线杀菌</big>''' |- |<center><img src=https://p1.ssl.qhimg.com/t011af4bdd305fa4e08.png width="300"></center> <small>[https://baike.so.com/gallery/list?ghid=first&pic_idx=1&eid=3719497&sid=3908371 来自 呢图网 的图片]</small> |- | style="background: #FF2400" align= center| '''<big></big>''' |- | align= light| 中文名;紫外线杀菌 作用最强;波长为253.7时的紫外线 紫外线波长;240~280nm 方式;破坏DNA或RNA |} '''紫外线杀菌'''是紫外线波长在240~280nm范围内最具杀破坏[[细菌病毒]]中的[[DNA]](脱氧核糖核酸)或RNA(核糖核酸)的分子结构,造成生长性细胞死亡和(或)再生性细胞死亡,达到杀菌消毒的效果。尤其在波长为253.7时紫外线的杀菌作用最强。<ref>[https://www.zhihu.com/question/25007335 紫外线消毒灯真的有用吗?],知乎 , </ref> ==含义== 此波段与微生物细胞核中的脱氧核糖核酸的紫外线吸收和光化学敏感性范围重合,如下图。图中显示核糖核酸和脱氧核糖核酸的吸收光谱的范围为240~280nm,吸收峰在260nm。通常认为紫外线能改变和破坏结构突变,改变了细胞的遗传转录特性,使生物体丧失[[蛋白质]]的合成和复制繁殖能力,其他的[[蛋白质]]吸收(苯基丙氨酸、色氨酸和酪氨酸中的芳香环的吸收峰为280nm)也可能对紫外线的杀菌过程发挥作用。 一般日光穿透大气层后达到地面的紫外线的波长为287~390nm,偏离紫外线的最佳杀菌波长范围(约250~285nm)。主要是大气臭氧层的吸收作用使日光光谱中低于290nm的紫外线强度速度减少,故日光的杀菌能力逊于专用的紫外线杀菌灯。 ==特点== 紫外线杀菌作用较强,但对物体的穿透能力很弱。它适用于[[手术室]]、[[烧伤病房]]、[[传染病房]]和[[无菌间]]的空间消毒及不耐热物品和台面表面消毒。 ==能量效率== 紫外线灯杀菌系统的总能量效率为下列各个效率的乘积。 1.电效率 紫外线灯发射的杀菌波段功率占灯管和镇流器的总电耗的比例。 2.可杀菌光占杀菌波段功率的比例 本项专对反射式反应器而言。这是因为在光线穿过两种不同的介质时会在介质的界面上产生反射。设计紫外线设备的时候应考虑到光线入射角度,尽量减少反射光的损失。 3.介质中的入射光中用于实际杀菌所占的比例 取决于[[介质]]的[[吸收性质]]、[[微生物的浓度]]、[[光程长度]]、[[辐射剂量]]和[[流动状态]]。该值很低,故实用上常以宏观的最低辐射剂量描述。 在设计紫外线杀菌装置的时候,要注意根据实际杀菌所需的紫外线消毒波段的功率,选择合适的紫外线灯管形式,并进行有关的技术经济比较。目前对于各种灯杀菌效率的比较尚缺乏一种按辐射波长衡量的杀菌效果的权重分析方式,仅采用单位面积的辐射功衡量的辐射剂量指标是不完全的,必须结合辐射波长、水层厚度、水质和运行环境因素,考虑施工、经济和维修条件进行灯具选型和反应器的设计。 ==紫外线灯寿命== 灯管的老化将使灯失去30%~50%的发光强度,老化时短波段衰减最快。有时透光介质的老化可以用加热法恢复(如可将老化的石英加热到1000°C,维持数小时)。为了保证杀菌的效率,一般当灯管的实际使用时间达到标称寿命的75%时就应该更换。测定老化程度比较可靠的方法是定期测量灯管的输出光强,最好是测定其发射光谱。有人建议对于低压紫外线灯消毒系统,当辐射强度低达25W/cm时就应予以更换灯管。早期国产低压灯管的有效使用时间(定义为当发光效率下降到初始值的70%时的使用时间)一般为1000~3000h(国外为7500~14000h),目前已提高到8000~12000h左右。 紫外线灯启动时对灯管的寿命影响较大。对于低压灯管,一般每次启动需要3~6min的稳定时间,通常按每启动点燃一次灯管消耗3h有效使用时间计算;高压灯管每次启动的稳定时间约为5~10min,常按一次启动相当于消耗5~10h有效使用时间计算。 ==微生物光复活== 光复活是通过光修复过程完成的。大量研究表明,病毒本身没有修复能力;有些细菌虽然具有修复能力,但是受到照射的紫外剂量越高,其修复能力就越低。微生物的修复可分为光修复和黑暗修复微生物在受到紫外线照射到遇见可见光的间隔时间越长,光修复能力越低。如果间隔时间超过2h,一些微生物会完全丧失光修复能力。 微生物的光复活作用主要是通过光裂解酶在特定波长的光作用下来实现的,反应过程遵循酶催化动力学原理。光强度增大,微生物的光复活作用则增强影响微生物光复活的因素主要是紫外线消毒设备、照射剂量、复活光源、温度。当温度从5℃升至30℃时,光复活速率常数增大。 ==应用== 消除臭氧 在工业生产中,臭氧常被用于消毒和净化水体。但是,由于臭氧有极强的氧化能力,水中剩余的臭氧如果不被去除会有可能对下一流程有所影响,因此,通常臭氧处理过的水在进入主要的工艺流程之前必须将水中[[剩余臭氧]]去除掉。254纳米波长的紫外线对于破坏剩余臭氧非常有效,它可以把臭氧分解成氧气。尽管不同的系统所需要的规模不同,但通常来讲,一个典型的臭氧消除系统所需的紫外线放射量是一个传统的灭菌消毒系统的三倍左右。 降低总有机碳量 在很多高技术和实验室装置中,有机物会妨碍高纯度水的生产。有很多方法可以把有机物从水中清除掉,较常用的方法包括使用活性炭和反渗透。波长较短的紫外线(185纳米)也可以有效地降低总有机碳量(值的一提的是这些放射器也产生254纳米波长的紫外线,因此可以同时进行消毒)。波长较短的紫外线具有更多的能量,因此能够分解有机物。紫外线氧化有机的反应过程虽然非常复杂,其主要原理是通过产生氧化能力很强的自由氢氧,将有机物氧化成水和二氧化碳。和臭氧清除系统一样,这种降解有机碳的紫外线系统的紫外线放射量是传统消毒系统的三到四倍。 液体糖消毒 大多数食品和饮料厂家都大量地使用液体糖。由于糖是很容易被细菌所利用的食物,因此很容易促成细菌繁殖。另外,液体糖是不透明的,所以很难进行彻底消毒。254纳米波长的紫外线可以用来对液体糖产品进行消毒。为了弥补液体的黏稠度和颜色造成的能量损耗,很多紫外线发射器需要被紧紧地排列起来组成所谓的 “薄膜” 反应器。这种放射器的紧密组合可以提供所要求的非常高的紫外线放射量,从而可以对液体糖进行有效的消毒。它的紫外线的能量输出大约是传统消毒系统的7到10倍。 降解余氯 在市政水处理和供水系统, 加[[氯]]消毒是非常必要的。但在工业生产过程中,为了避免对产品产生不良影响,去除水中的余氯却经常是必要的前处理。消除余氯的基本方法有活性炭床和化学处理。活性碳处理的缺点在于它需要不断再生,而且经常遇到细菌滋生的问题。185纳米和254纳米波长的[[紫外线]]都被证实可以有效地破坏[[余氯]]和[[氯氨]]的化学键。虽然需要巨大的紫外线能量才能发挥作用,但它的优点在于此方法不需向水中添加任何药物,不需要储存化学物质,容易维修,而且同时还有[[杀菌]]和[[去除有机物]]的作用。 表面和空气消毒 用紫外线进行[[空气消毒]]和紫外线用于水消毒一样有很久的历史。空气消毒设备用于医院、诊所和净化房间已行之有年。现在,[[工厂]]、[[办公室]]和[[家庭]]也开始使用空气消毒设备。 空气消毒的原理和水消毒一样。通常,紫外线灯可安装在空气管道里,位于盘管的前端,或装在固定于墙上的架子上。当空气经过时,空气中的微生物就被杀死而变得无害了。表面消毒的原理也是这样。在食品和饮料生产业中,传送带上的产品就是由表面消毒设备进行消毒的。 冷却塔消毒 为了降低杀生剂的费用以及化学处理对健康的危害,紫外线系统可以安装在[[冷却塔]]的[[水循环系统]]中以起到杀菌的作用。如果和过滤器一并使用,紫外线可以有效的控制[[微生物]]在冷却塔中的生长。虽然冷却塔中仍然需要保留一定的杀生剂浓度,应用紫外线可以大大降低其使用量。 == 相关视频 == <center> {{#iDisplay:a0979n3e6z3|480|270|qq}} <center>紫外线杀菌原理</center> </center> == 参考来源 == {{reflist}} [[Category:340 化學總論]]
此頁面使用了以下模板:
Template:Main other
(
檢視原始碼
)
Template:Reflist
(
檢視原始碼
)
模块:Check for unknown parameters
(
檢視原始碼
)
返回「
紫外线杀菌
」頁面