開啟主選單
求真百科
搜尋
檢視 结构陶瓷 的原始碼
←
结构陶瓷
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #008080" align= center| '''<big>结构陶瓷</big> ''' |- | [[File:150147146492355.jpg|缩略图|居中|[http://fs.avicui.com/thumb/file/20170731/15014714649270672566b6ea2868367ab6d6b09e72b570a0e5dfea44484a2477294008124d23ee17972dee94ad0595165af059429420ff30864.jpg 原图链接][https://pic.sogou.com/d?query=%E7%BB%93%E6%9E%84%E9%99%B6%E7%93%B7&st=255&from=vr&did=3&phu=http%3A%2F%2Fgss0.baidu.com%2F94o3dSag_xI4khGko9WTAnF6hhy%2Fzhidao%2Fpic%2Fitem%2F8326cffc1e178a82097e0175f103738da877e8a1.jpg&rawQuery=%E7%BB%93%E6%9E%84%E9%99%B6%E7%93%B7 来自搜狗的图片]]] |- | style="background: #008080" align= center| |- | align= light| |} 结构陶瓷具有优越的[[强度]]、[[硬度]]、[[绝缘性]]、[[热传导]]、[[耐高温]]、[[耐氧化]]、耐腐蚀、耐磨耗、高温强度等特色,因此,在非常严苛的环境或工程应用条件下,所展现的高稳定性与优异的机械性能,在材料工业上已倍受瞩目,其使用范围亦日渐扩大。而全球及国内业界对于高精密度、高耐磨耗、高可靠度机械零组件或电子元件的要求日趋严格,因而陶瓷产品的需求相当受重视,其市场成长率也颇可观。 中文名:结构陶瓷 特点:强度、硬度、绝缘性、热传导、耐高温、耐氧化、耐腐蚀、耐磨耗、高温强度 ==基本简介== 作为结构部件的 特种陶瓷。由单一或复合的氧化物或非氧化物组成,如单由Al2O3、ZrO2、SiC、Si3N4,或相互复合,或与碳纤维结合而成。用于制造陶瓷发动机和耐磨、耐高温的特殊构件。 《2013-2017年中国结构陶瓷市场评估与投资前景分析报告》共十五章。首先介绍了结构陶瓷相关概述、中国结构陶瓷产业运行环境等,接着分析了中国结构陶瓷行业市场运行的现状,然后介绍了中国结构陶瓷市场竞争格局。您若想对结构陶瓷产业有个系统的了解或者想投资结构陶瓷行业,本报告是您不可或缺的重要工具。 结构陶瓷的应用 结构陶瓷主要是指发挥其机械、热、化学等性能的一大类 新型陶瓷材料,它可以在许多苛刻的工作环境下服役,因而成为许多新兴科学技术得以实现的关键。 空间技术领域 在空间技术领域,制造宇宙飞船需要能承受高温和温度急变、强度高、重量轻且长寿的结构材料和防护材料,在这方面,结构陶瓷占有绝对优势。从第一艘宇宙飞船即开始使用高温与低温的 隔热瓦,碳-石英复合烧蚀材料已成功地应用于发射和回收人造地球卫星。未来空间技术的发展将更加依赖于新型结构材料的应用,在这方面结构陶瓷尤其是陶瓷基复合材料和碳/碳复合材料远远优于其他材料。 高新技术的应用是现代战争制胜的法宝。在军事工业的发展方面,高性能结构陶瓷占有举足轻重的作用。例如先进的亚音速飞机,其成败就取决于具有高韧性和高可靠性的结构陶瓷和纤维补强的陶瓷基复合材料的应用。 光通信产业 光通信产业是当前世界上发展最为迅速的高技术产业之一,全世界产值已超过30亿美元。其所以发展如此迅速主要依赖于光纤损耗机理的研究以及光纤接头结构材料的使用。我所已成功地运用氧化锆增韧陶瓷材料开发出光纤接头和套管,性能优良,很好地满足了我国光通信产业的发展需要。 随着半导体器件的高密度化和大功率化,集成电路制造业的发展迫切需要研制一种绝缘性好导热快的新型基片材料。80年代中后期问世的高导热性氮化铝和碳化硅基板材料正逐步取代传统的氧化铝基板,在这一领域,我所研制成功的高热导氮化铝陶瓷热导率达到228 W/m×K,性能居国内外前列。氮化铝-玻璃复合材料,已成为当代电子封装材料领域的研究热点,其热导率是氧化铝-玻璃的5-10倍,烧结温度在1000°C以内,可与银、铜等布线材料共烧,从而制造出具有良好导热和电性能多层配线板,我所研制的氮化铝-玻璃复合材料,热导率达到10.8 W/m×K的,在国际上居于领先地位,很好地满足了大规模集成电路小型化、密集化的要求。 ==相关术语== 特种结构陶瓷是陶瓷材料的重要分支,它以耐高温、高强度、超硬度、耐磨损、抗腐蚀等机械力学性能为主要特征,因此在冶金、宇航、能源、机械、光学等领域有重要的应用。我该公司生产的特种结构陶瓷包括如下类型: 氮化物陶瓷 氮化物陶瓷是近20多年来发展起来的新型工程陶瓷、与一般的硅酸盐陶瓷不同之处在于前者氮和硅的结合属于共价键性质的结合,因而有结合力强、绝缘性好的特点。 氮化硅的强度很高,硬度也很高,是世界上最坚硬的物质之一,它的耐温性较好,强度可维持到1200°C高温而不下降,一直到1900°C才会分解,而且它具有惊人的耐化学腐蚀性能,同时又是一种高性能的电绝缘材料。该公司采用微波烧成工艺生产的各种氮化硅陶瓷制品总体性能达到国际先进水平。 氮化铝的理论热导是320W/m·k,大约是铜热导的80%,同时氮化铝有低的介电常数、高电阻、低密度和接近硅的热膨胀系数,综合性能优于Al2O3、BeO、SiC等,被用于高导热绝缘子和电子基板材料。该公司生产的各种氮化铝陶瓷制品密度大于3.25,热导率120~200W/m·K可根据用于需求生产各种规格氮化铝陶瓷。 ==复合陶瓷== 微波超高温烧结碳化硼陶瓷装甲材料 高致密的碳化硅/碳化硼复合陶瓷,其弯曲强度即使在1400°C左右的高温下仍可达500~600MPa。该公司采用微波增强反应渗透工艺生产的碳化硅/碳化硼复合特种陶瓷材料具有比重小、高硬度、高模量、耐冲击的特点,应用于新一代的陶瓷装甲。 耐高温、高强度、高韧性陶瓷 氧化锆增韧陶瓷已在结构陶瓷研究中取得了重大进展,经过增韧的基质材料,除了稳定的氧化锆以外,常见的有氧化铝、氧化钍、尖晶石、莫来石等氧化物陶瓷。该公司利用微波高温设备可以更低成本大批量生产各种氧化物特种结构陶瓷。 耐高温、耐腐蚀的透明陶瓷 现代电光源的构成对材料的耐高温、耐腐蚀性及透光性有很高的要求,该公司利用微波烧结生产的氧化铝、氮化铝透明陶瓷材料总体透光性能和机械性能超过传统方法生产的产品。应用于各种高温光学窗口、探头、灯管。 ==其他材料== 与结构陶瓷相关的其他材料 电子陶瓷钢材 结构陶瓷 绝缘材料 耐磨 耐磨材料 耐磨管道 耐磨陶瓷 耐磨弯头 特种陶瓷 氧化铝陶瓷陶瓷发展史 结构陶瓷 在材料中,有一类叫结构材料主要制利用其强度、硬度韧性等机械性能制成的各种材料。金属作为结构材料,一直被广泛使用。但是,由于金属易受腐蚀,在高温时不耐氧化,不适合在高温时使用。高温结构材料的出现,弥补了金属材料的弱点。这类材料具有能经受高温、不怕氧化、耐酸碱腐蚀、硬度大、耐磨损、密度小等优点,作为高温结构材料,非常适合。 氧化铝陶瓷 氧化铝陶瓷(人造刚玉)是一种极有前途的高温结构材料。它的熔点很高,可作高级耐火材料,如坩埚、高温炉管等。利用氧化铝硬度大的优点,可以制造在实验室中使用的刚玉磨球机,用来研磨比它硬度小的材料。用高纯度的原料,使用先进工艺,还可以使氧化铝陶瓷变得透明,可制作高压钠灯的灯管。 氮化硅陶瓷 氮化硅陶瓷陶瓷也是一种重要的结构材料,它是一种超硬物质,密度小、本身具有润滑性,并且耐磨损,除氢氟酸外,它不与其他无机酸反应,抗腐蚀能力强;高温时也能抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1000以上,急剧冷却再急剧加热,也不会碎裂。正是氮化硅具有如此良好的特性,人们常常用它来制造轴承、汽轮机叶片、机械密封环、永久性模具等机械构件。 氮化硼陶瓷、碳化硼陶瓷 氮化硼陶瓷是一种新兴的工业材料 ,它是一种六方晶系的结晶体 ,具有鳞片状结构 。其外观似象牙 。氮化硼 陶瓷是随着宇宙 航 空和电子工业 的发展而发展起来的 ,在工业上有着广 泛的用途 。早在 年 已被发现 ,从第二次世界大战后对这种材料进行了大量 的研究工作 ,直到 年解决了 热压方法后才获得迅速发展 ,我国从 年研希 弓 成功 原料 ,年研制 成功热压 陶瓷,并已应用于我口工业和二一技术 。 人造宝石 红宝石和蓝宝石的主要成分都是Al2O3(刚玉)。红宝石呈现红色是由于其中混有少量含铬化合物;而蓝宝石呈蓝色则是由于其中混有少量含钛化合物。 1900年,科学家曾用氧化铝熔融后加入少量氧化铬的方法,制出了质量为2g-4g的红宝石。 现在,已经 能制造出大到10g的红宝石和蓝宝石。<ref>[https://www.docin.com/p-475385814.html 结构陶瓷]豆丁网</ref> =='''参考文献'''== {{Reflist}} [[Category:470 製造總論]]
此頁面使用了以下模板:
Template:Main other
(
檢視原始碼
)
Template:Reflist
(
檢視原始碼
)
模块:Check for unknown parameters
(
檢視原始碼
)
返回「
结构陶瓷
」頁面