開啟主選單
求真百科
搜尋
檢視 AI嵌入式系统 的原始碼
←
AI嵌入式系统
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- |<center><img src=https://www0.kfzimg.com/sw/kfz-cos/kfzimg/13258766/21dfcd804ac98429_s.jpg width="260"></center> <small>[https://book.kongfz.com/175580/7269509355 来自 孔夫子网 的图片]</small> |} 《'''AI嵌入式系统'''》,副标题:算法优化与实现,应忍冬,刘佩林 著,出版社: 机械工业出版社。 机械工业出版社成立于1950年,是建国后国家设立的第一家科技[[出版社]],前身为科学技术出版社,1952年更名为机械工业出版社<ref>[https://www.maigoo.com/maigoo/6296cbs_index.html 中国十大出版社-出版社品牌排行榜],买购网</ref>。机械工业出版社(以下简称机工社)由[[机械工业信息研究院]]作为主办单位,目前隶属于国务院国资委<ref>[http://www.cmpbook.com/about 企业简介],机械工业出版社</ref>。 ==内容简介== 本书介绍在嵌入式系统中的机器学习算法优化原理、设计方法及其实现技术。内容涵盖通用嵌入式优化技术,包括基于SIMD指令集的优化、内存访问模式优化、参数量化等。并在此基础上介绍了信号处理层面的优化,包括AI推理算法及基于神经网络的AI算法训练-推理联合的优化理论与方法。其中信号处理层面优化包括了基于线性代数的快速近似算法、基于多项式的快速卷积构造技术、基于数据二进制结构的快速乘法算法等;在[[AI]]推理层面,介绍了机器学习推理模型共性结构、运算图中各个算子的计算优化途径;另外对基于神经网络AI算法,阐述了如何将推理阶段的运算量约束以及底层数据量化约束加入训练代价函数,从算法训练端减少运算量以提升AI嵌入式系统的运行效率;此外本书还通过多个自动搜索优化参数并生成C代码的例子介绍了通用的嵌入式环境下机器学习算法自动优化和部署工具开发的基本知识;本书通过应用例子和大量代码说明AI算法在通用嵌入式系统中的实现方法,力求让读者在理解算法的基础上,通过实践掌握高效的AI嵌入式系统开发的知识与技能。 ==作者介绍== 应忍冬 [[上海交通大学电子信息与电气工程学院]]副教授,硕士生导师。长期从事嵌入式系统和数字电路教学与科研工作。主要研究领域包括数字信号处理VLSI架构、3D视觉信号处理、类脑智能算法及嵌入式实现技术等。主持或参加过多项国家重点科研项目,在数字信号处理理论和工程实现方面拥有丰富经验。 刘佩林 上海交通大学电子信息与电气工程学院教授,博士生导师。研究领域包括音频、视频、3D信号处理与智能分析,面向机器人的环境感知、人机交互、定位与导航,以及类脑计算与低功耗电路设计等。2017年起任上海交通大学类脑智能应用技术研究中心主任。 ==参考文献== [[Category:040 類書總論;百科全書總論]]
返回「
AI嵌入式系统
」頁面