導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.14.249.124
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 纳维-斯托克斯存在性与光滑性 的原始碼
←
纳维-斯托克斯存在性与光滑性
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
'''纳维-斯托克斯存在性与光滑性'''是有关纳维-斯托克斯方程其解的数学性质有关的数学问题,是美国克雷数学研究所在2000年提出的7个千禧年大奖难题中的一个问题。<ref>[https://zhuanlan.zhihu.com/p/344269311 什么是纳维-斯托克斯方程?在建模仿真中有哪些应用?]知乎</ref> {| class="wikitable" style="float:right; margin: -10px 0px 10px 20px; text-align:left" |<center><img src=" https://i03piccdn.sogoucdn.com/dc336d1ad300255d " width="180"></center><small>[]</small> |} 纳维-斯托克斯方程是[[流体力学]]的重要方程,可以描述空间中流体(液体或气体)的运动。纳维-斯托克斯方程的解可以用到许多实务应用的领域中。不过对于纳维-斯托克斯方程解的理论研究仍然不足,尤其纳维-斯托克斯方程的解常会包括紊流。虽然紊流在科学及工程中非常的重要,不过紊流仍是未解决的物理学问题之一。 许多纳维-斯托克斯方程解的基本性质都尚未被证明。例如数学家就尚未证明在三维坐标,特定的初始条件下,纳维-斯托克斯方程是否有符合光滑性的解。也尚未证明若这様的解存在时,其动能有其上下界,这就是“纳维-斯托克斯存在性与光滑性”问题。 由于了解纳维-斯托克斯方程被视为是了解难以捉摸的紊流现象的第一步,克雷数学研究所在2000年5月提供了美金一百万的奖金给第一个提供紊流现象相关信息的人,而不是给第一个创建紊流理论的人。基于上述的想法,克雷数学研究所设定了以下具体的数学问题。 证明或反证以下的叙述: 在三维的空间及时间下,给定一启始的速度场,存在一矢量的速度场及标量的压强场,为纳维-斯托克斯方程的解,其中速度场及压强场需满足光滑及全局定义的特性。 纳维-斯托克斯方程依赖微分方程来描述流体的运动。不同于[[代数方程]],这些方程不寻求建立所研究的变量(譬如速度和压力)的关系,而寻求建立这些量的变化率或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。其中,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明,加速度(速度的导数,或者说[[变化率]])是和内部压力的导数成正比的。 这表示对于给定的物理问题,至少要用微积分才可以求得其纳维-斯托克斯方程的解。实用上,也只有最简单的情况才能用这种方法获得已知解。这些情况通常涉及稳定态(流场不随时间变化)的非紊流,其中流体的粘滞系数很大或者其速度很小(低雷诺数)。 对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维-斯托克斯方程的解必须借助计算机才能求得。这个科学领域称为计算流体力学。 虽然紊流是日常经验中就可以遇到的,但这类非线性问题极难求解。克雷数学学院于2000年5月21日设立了一个$1,000,000的大奖,奖励任何对于能够帮助理解这一现象的数学理论作出实质性进展的任何人。
返回「
纳维-斯托克斯存在性与光滑性
」頁面