導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
13.58.39.166
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 光化学 的原始碼
←
光化学
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
[[File:光化学1.jpg|缩略图|光化学[https://ss3.bdstatic.com/70cFv8Sh_Q1YnxGkpoWK1HF6hhy/it/u=2499591735,2298346048&fm=26&gp=0.jpg 原图链接][https://ss3.bdstatic.com/70cFv8Sh_Q1YnxGkpoWK1HF6hhy/it/u=2499591735,2298346048&fm=26&gp=0.jpg 图片来源百度网]]] '''光化学'''的定义有不同的表述。C. H. Wells认为,光化学研究的是“吸收了紫外光或可见光的分子所经历的化学行为和[[物理过程]]”。[[N. J. Turro]]则认为“光化学研究的是电子激发态分子的化学行为和物理过程”。由于[[电子]]激发态通常由分子吸收紫外光或可见光形成,所以上述两种定义的实质是一样的。<ref>[康锡惠,刘梅清,光化学原理与应用,天津:天津大学出版社,1984]</ref> 光化学是研究光与物质相互作用所引起的永久性化学效应的化学分支学科。由于历史的和实验技术方面的原因,光化学所涉及的光的[[波长]]范围为 100~1000纳米,即由[[紫外]]至近[[红外波段]]。比紫外波长更短的电磁辐射,如X或γ射线所引起的光电离和有关化学属于辐射化学的范畴。至于远红外或波长更长的[[电磁波]],一般认为其光子能量不足以引起光化学过程,因此不属于光化学的研究范畴。观察到有些化学反应可以由高功率的红外激光所引发,但将其归属于红外激光化学的范畴。 '''中文名''':[[光化学 ]] '''外文名''':[[photochemistry]] '''提出者''':[[贾科莫·恰米奇安]] [[File:光化学2.jpg|缩略图|光化学[https://ss0.bdstatic.com/70cFvHSh_Q1YnxGkpoWK1HF6hhy/it/u=2116583210,619081696&fm=26&gp=0.jpg 原图链接][https://ss0.bdstatic.com/70cFvHSh_Q1YnxGkpoWK1HF6hhy/it/u=2116583210,619081696&fm=26&gp=0.jpg 图片来源百度网]]] '''主要定律''':[[光化活性原理、光化当量定律]] '''建立时间''':[[19世纪末]] '''著名科学家''':[[贾科莫·恰米奇安、德雷珀]] ==光化学定律== ==第一定律== 光化学第一定律 first laW of photochemistry 仅被物质吸收的光才能引起光化反应的定律,亦称作[[光化活性原理]](principle of photochemical activation)或[[格络塞斯、德雷珀定律]](Grotthuss Draper’s law,1818)。事实表明,光化学第一定律在生物的光化反应上也是成立的,如视觉中暗适应周围视觉的相对光谱亮度曲线与视紫红质的吸收波谱相一致,光合作用波谱与叶绿素之类的吸收波谱甚相对应等说明了这个问题。 ==第二定律== 爱因斯坦在1905年提出,在初级光化学反应过程中,被活化的[[分子数]](或原子数)等于吸收光的量子数,或者说分子对光的吸收是[[单光子过程]](电子激发态分子寿命很短,吸收第二个分子的几率很小),即光化学反应的初级过程是由分子吸收光子开始的,此定律又称为Einstein光化当量定律。<ref>[CadetJ,AnselminoC,DoukiT,Volturi2LJPhotochemPhotobiol,B:Biol,1992,(15):227]</ref> E=hv= hc/λ λ——光量子波长 h ——普朗克常数 c——光速 [[File:光化学3.jpg|缩略图|光化学[https://ss0.bdstatic.com/70cFuHSh_Q1YnxGkpoWK1HF6hhy/it/u=3255648506,1962357198&fm=26&gp=0.jpg 原图链接][https://ss0.bdstatic.com/70cFuHSh_Q1YnxGkpoWK1HF6hhy/it/u=3255648506,1962357198&fm=26&gp=0.jpg 图片来源百度网]]] E=N0hv= N0hc/λ N0——阿伏加德罗常数 Λ=400nm,E=299.1kJ/mol Λ=700nm,E=170.9kJ/mol 由于通常化学键的键能大于167.4kJ/mol,所以波长大于700nm的光就不能引起光化学离解。 ==分类== [[美国]][[ace glass ]]光化学反应系统光化学过程可分为初级过程和次级过程。初级过程是分子吸收光子使电子激发,分子由基态提升到激发态,激发态分子的寿命一般较短。光化学主要与低激发态有关,激发态分子可能发生解离或与相邻的分子反应,也可能过渡到一个新的激发态上去,这些都属于初级过程,其后发生的任何过程均称为次级过程。例如[[氧分子]]光解生成两个[[氧原子]],是其初级过程;氧原子和氧分子结合为臭氧的反应则是次级过程,这就是高空大气层形成臭氧层的光化学过程。分子处于激发态时,由于电子激发可引起分子中价键结合方式的改变,使得激发态分子的几何构型、酸度、颜色、反应活性或反应机理可能和基态时有很大的差别,因此光化学反应比热化学反应更加丰富多彩。 光化学反应已经广泛用于合成化学,由于吸收给定波长的光子往往是[[分子]]中某个[[基团]]的性质,所以光化学提供了使分子中某特定位置发生反应的最佳手段,对于那些热化学反应缺乏选择性或反应物可能被破坏的体系,光化学反应更为可贵。大气污染过程也包含着极其丰富而复杂的光化学过程,例如[[氟里昂]]等[[氟碳化物]]在高空大气中光解产物可能破坏臭氧层,产生臭氧层“空洞”。<ref>[邓南圣,吴峰编著.环境光化学[M].化学工业出版社,2003]</ref> ==内容== 电磁辐射能的吸收与分子的激发态 光化学的初级过程是分子吸收光子使电子激发,分子由基态提升到激发态。分子中的[[电子]]状态、振动与转动状态都是[[量子化]]的,即相邻状态间的能量变化是不连续的。因此分子激发时的初始状态与终止状态不同时,所要求的光子能量也是不同的,而且要求二者的能量值尽可能匹配。由于光子的能量ε=hv=hc/λ(式中h为普朗克常数;v为光的频率;λ为光的波长;c为光速),所以能量匹配体现为光的波长的匹配。 分子在一般条件下处于能量较低的稳定状态,称作基态。受到光照射后,如果分子能够吸收分子,就可以提升到能量较高的状态,称作激发态。如果分子可以吸收不同波长的[[电磁辐射]],就可以达到不同的激发态。按其能量的高低,从基态往上依次称做第一激发态、第二激发态等等;而把高于第一激发态的所有激发态统称为高激发态。激发态分子的寿命一般较短,而且激发态越高,其寿命越短,以致于来不及发生化学反应,所以光化学主要与低激发态有关。激发时分子所吸收的电磁辐射能有两条主要的耗散途径:一是和光化学反应的[[热效应]]合并;二是通过光物理过程转变成其他形式的能量。光物理过程又可分为:①辐射弛豫过程,即将全部或一部分多余的能量以辐射能的形式耗散掉,分子回到基态,如发射[[荧光]]或[[磷光]];②非辐射弛豫过程,多余的能量全部以热的形式耗散掉,分子回到基态(见雅布隆斯基态图解)。 如果分子中的电子是一一配对的(电子自旋方向相反),这种状态在光谱学上称为单重(线)态(在分子式左上角用上标1表示,如1A,或记作S,依能量由低至高分别用S0、S1、…表示)。若分子中有两个电子的自旋平行,这种状态称为三重(线)态(用3A或T1、T2、…表示)。单重态的激发态寿命很短,一般在10-8~10-9秒的量级。当基态为单重态时,激发三重态的寿命一般较长,可达到10-3~100秒的量级。所以有机化合物的[[光化学]]大都是三重态的光化学。 分子处于激发态时,由于电子激发可引起分子中价键结合方式的改变〔如电子由成键的 π轨道跃迁到反键的π*轨道,记作(π,π*);或由非键的n轨道跃迁到反键的π*轨道,记作(n,π*)等〕,使得激发态分子的几何构型、酸度、颜色、反应活性或反应机理可能和基态时有很大的差别,因此光化学比基态(热)化学更加丰富多彩。<ref>[陈建.光化学研究进展综述[J].化工时刊,2005,09:63-65]</ref> ==量子产率== 也叫量子效率或量子产额。是光化学重要的基本量之一。设反应为A+hv→B,初级过程的量子产率定义为: 如果激发态的A分子在变成为B的同时,还平行地发生着其他光化学和光物理过程,那么这个初级过程的量子产率将受到其他竞争的平行过程的“[[量子产率]]”的影响。由于在一般光强条件下,每个分子只能吸收1个光子,所以所有初级过程的量子产率的总和应等于1。 量子效率的测定有绝对测定法与相对测定法。相对法指与一种其绝对量产率为已知的[[体系]]相比较的方法。绝对法则要求直接建立起反应的量子产率和波长、温度、光强以及各种离子(特别是[[氢离子]])浓度间的[[函数]]关系。现在已经研究过的这类体系有气体体系(如[[一氧化二氮]]、[[二氧化碳]]、[[溴化氢]]、[[丙酮]]等);液相体系(如[[草酸铁(Ⅲ]])钾溶液、[[草酸铀酰溶液]]、二苯酮-二苯甲醇、2-己酮、偶氮苯、苯甲酸等〕;固相体系(如硝基苯甲醛、二苯酮-二苯甲醇等)。这些方法所用的仪器统称为化学露光计。 ==次级步骤== 如果一个激发态分子不是直接回到它的最低能态,它必须发生以下过程:解离(产生自由电子、原子、自由基或分子碎片);与相邻的同种或不同种分子反应;过渡到一个新的激发态上去。这些过程可以平行地发生,也可以只发生其中的一种或几种,但这些都属于光化学的初级过程。其后的任何步骤均称为次级步骤。例如氧分子光解后生成两个[[氧原子]],是其初级过程;在纯[[氧]]中将发生的重要次级过程是氧原子和氧分子结合为臭氧的反应;氧和臭氧在典型的城市大气中又都可以和[[碳氢化合物]]进行一系列反应,所有这些反应都可以称为次级步骤。 ==分子重排反应== 原子从分子中的一处移向他处的反应称为分子重排反应。许多有机分子在光激发后发生的重排过程也属于次级步骤。如苯经光激发后变为[[亚甲基环戊二烯]]的反应: 第一步只是苯环中6个比较自由的共轭 π电子的激发(一般只激发1个电子),这对[[苯分子]]中的碳氢键影响不大;而在次级步骤中由于原子的重排,生成了结构完全不同的产物。 有时,初级光化学过程可用作研究次级反应的工具,光敏化反应就属于这类情况。如汞原子能有效地吸收汞灯发射的光而被激发,然后通过与其他分子的碰撞,传递所吸收的能量。例如: Hg+hv→Hg* Hg*+N2O→Hg+N2+O 氧原子可以和体系中存在的其他物质反应,从释放出来的[[氮气]]量可以计算出所产生的氧原子数量。 如果初级光化学步骤是分子光解成两个自由基(有单个或未配对电子的分子碎片),通常,其次级步骤为链反应。氢与氯的反应是已经熟知的例子,其过程为: hv+Cl2→2Cl Cl+H2→HCl+H H+Cl2→HCl+Cl 在链反应中,每个量子可以产生多个[[产物分子]],因此这类反应的总量子产率不仅可能大于1,有时可以达到几百甚至几千。所以当量子产率大于1时,一般可考虑反应具有链反应的机理。 决定一个光化学反应的真正途径往往需要建立若干个对应于不同机理的假想模型,找出各模型体系与浓度、光强及其他有关参量间的动力学方程,然后考察何者与实验结果的相符合程度最高,以决定哪一个是最可能的反应途径。研究反应机理的常用实验方法,除示踪原子标记法外,在光化学中最早采用的猝灭法仍是非常有效的一种方法。这种方法是通过被激发分子所发荧光被其他分子猝灭的动力学测定来研究光化学反应机理的。它可以用来测定分子处于电子激发态时的酸性、分子双聚化的反应速率和能量的长程传递速率。猝灭是一种双分子过程,如原激发分子为A*,猝灭剂分子为Q,此过程为: A*+Q→A+Q* 显然猝灭过程也是一种敏化过程。Q可以看成是 A*的猝灭剂,也可以把A看成是Q的敏化剂。 ==相关书籍== 合成化学中的应用 由于吸收给定波长的光子往往是分子中某个基团的性质,所以光化学提供了使分子中某特定位置发生反应的最佳手段,对于那些热化学反应缺乏选择性或反应物可能被破坏的体系更为可贵。光化学反应的另一特点是用光子为试剂,一旦被反应物吸收后,不会在体系中留下其他新的杂质,因而可以看成是“最纯”的试剂。 如果将反应物固定在固体格子中,光化学合成可以在预期的构象(或构型)下发生,这往往是热化学反应难以做到的。例如[[马来酸]]与[[富马酸]]的二聚体的固态光合成,以及在冠醚和β-环糊精中的光定向合成,都获得成功。 大气中的光化学 地球与行星的大气现象, 如[[大气构成]]、[[极光]]、[[辐射屏蔽]]和[[气候]]等,均和大气的化学组成与对它的辐照情况有关。地球的大气在地表上主要由氮气与氧气组成。但高空处大气的原子与分子组成却很不相同,主要和吸收太阳辐射后的光化学反应有关。大气污染过程包含着极其丰富而复杂的化学过程,用来描述这些过程的综合模型包含着许多光化学过程。如棕色二氧化氮在日照下激发成的高能态分子,是氧与碳氢化物链反应的引发剂。又如氟碳化物在高空大气中的光解与臭氧屏蔽层变化的关系等都是以光化学为基础的(见环境光化学)。 ==区别== 光化学过程是地球上最普遍、最重要的过程之一,绿色植物的光合作用,动物的视觉,涂料与高分子材料的光致变性,以及照相、光刻、有机化学反应的光催化等,无不与光化学过程有关。近年来得到广泛重视的[[同位素]]与[[相似元素]]的光致分离、光控功能体系的合成与应用等,更体现了光化学是一个极活跃的领域。但从理论与实验技术方面来看,在化学各领域中,光化学还很不成熟。<ref>[杜波,陈晓燕.光化学催化氧化技术研究进展[J].内蒙古环境科学,2007,02:52-54]</ref> 光化学反应与一般热化学反应相比有许多不同之处,主要表现在:①加热使分子活化时,体系中分子能量的分布服从[[玻耳兹曼]]分布;而分子受到光激活时,原则上可以做到选择性激发(能跃值的选择、电子激发态模式的选择等),体系中分子能量的分布属于非平衡分布。所以光化学反应的途径与产物往往和基态热化学反应不同。②只要光的波长适当,能为物质所吸收,即使在很低的[[温度]]下,光化学反应仍然可以进行。 ==相关学科== [[化学]]、[[无机化学]]、[[有机化学]]、[[分析化学]]、[[物理化学]]、[[化学动力学]]、[[化学热力学]]、[[结构化学]]、[[量子化学]]、[[电化学]]、[[核化学]]、[[高分子化学]]、[[放射化学]]、[[同位素化]]学、[[辐射化学]]。 ==专业书籍== 作者: 姜月顺、李铁津 出版社: 化学工业出版社 出版日期: 2005年01月 ISBN: 7-5025-6135-8 开本: 16 开 类别: 物理化学,材料科学,其它方向 页数: 356 页 简介:本书介绍光化学、[[光物理]]和[[光生物]]领域的有关基础知识。具体内容包括:分子轨道和吸收光谱;分子激发态的命运--光物理和光化学过程;有机光化学反应;无机和半导体材料的光化学与光电化学;激光化学与分子动态学;飞秒化学;有机分子体系的光电子转移催化;超分子组装体系的光物理和光化学过程;光和表面与界面化学;摄影感光材料化学;光信息存储材料和技术;[[纳米晶]]光电化学太阳能转化;[[光合]]作用。 ==历史== 最早进行光化学研究的学者是[[意大利]]化学家G. L. Ciamician,从1886年开始,他与意大利化学家Paolo Silber共同完成了“苯醌向对苯二酚的转化”以及“硝基苯在醇溶液中的光化学作用”等研究,他也可被认为是[[太阳能]][[电池板]]之父。在1912年的第8届国际应用化学大会上,他以“光化学的未来”为题发表了一篇演讲,展望了光化学在未来可能起到的重要作用。 ==研究内容== 有机光化学 [[File:光化学4.jpg|缩略图|光化学[https://ss0.bdstatic.com/70cFvHSh_Q1YnxGkpoWK1HF6hhy/it/u=3009396769,2985498027&fm=15&gp=0.jpg 原图链接][https://ss0.bdstatic.com/70cFvHSh_Q1YnxGkpoWK1HF6hhy/it/u=3009396769,2985498027&fm=15&gp=0.jpg 图片来源百度网]]] 烯烃光化学 芳烃光化学 羰基化合物光化学 共轭烯酮光化学 偶氮化合物光化学 重氮化合物光化学 叠氮化合物光化学 有机硫化物光化学 光敏氧化反应 光催化 超分子光化学 光电化学 生物光化学 ==视频== ==科普系列之---光化学== {{#iDisplay:h0122i7d981 | 560 | 390 | qq }} ==参考文献== {{Reflist}} [[Category:460 化學工程]]
此頁面使用了以下模板:
Template:Main other
(
檢視原始碼
)
Template:Reflist
(
檢視原始碼
)
模块:Check for unknown parameters
(
檢視原始碼
)
返回「
光化学
」頁面