導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.136.236.178
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 光滑函数 的原始碼
←
光滑函数
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #008080" align= center| '''<big>光滑函数</big> ''' |- | |- | style="background: #008080" align= center| |- | align= light| 中文名:光滑函数 外文名:smooth function 类 别:函数 学 科:数学 |} 光滑函数(smooth function)是指在其定义域内无穷阶数连续可导的函数。 <ref>[https://zhuanlan.zhihu.com/p/3059503901 光滑函数(附图)],知乎网</ref></br> ==定义== 光滑函数(smooth function)在数学中特指无穷阶可导的函数。若一函数是连续的,则称其为 函数;若函数1阶可导,且其1阶导函数连续,则被称为 函数;若n阶可导,且其n阶导函数连续,则为 函数。而光滑函数是对所有n都属于 的函数,特称其为光滑函数。 ==分类== 1.分段光滑函数</br> 若一元函数在闭区间上分段连续,至多除有限个点之外可微且导数连续,在这有限个点存在有限的广义单侧连续导数,则一元函数称为闭区间上的分段光滑函数。若f定义在无界区间上,而在此区间的任何闭子区间上分段光滑,则此一元函数称为在该无界区间上分段光滑。 分段光滑函数是分段可微的。</br> 2.部分光滑函数</br> 通俗的讲,部分光滑函数是一个全局非光滑的函数(globally non-smooth),然而沿着某一方向函数是光滑的,甚至2阶可导,然后“垂直”(transversal)于该方向,函数依旧非光滑。</br> ==实现== 例如,以自然对数为底的指数函数,即y=e^x显然是光滑的,因为它的导数就是其本身。</br> 构造在给定区间外为零但在区间内非零的光滑函数经常很有用。这是可以达到的;另一方面来讲,一个幂级数不可能有这样的属性。这表明光滑和解析函数之间存在着巨大的鸿沟;所以泰勒定理一般不可以应用到展开光滑函数。</br> 流形的光滑映射</br> 光滑流形之间的光滑映射可以用坐标图的方式来定义。因为函数的光滑性的概念和特定的坐标图的选取无关。这样的映射有一个一阶导数,定义在切向量上;它给出了在切丛的级别上的对应纤维间的线性映射。</br> 在需要讨论所有无穷可微函数的集合时,以及该空间的元素在微分和积分、求和、取极限时的行为时,人们发现所有光滑函数的空间不是一个合适的选择,因为它在这些操作下不是完备和闭合的。对于这个情况的一个正确处理,我们可以采用索伯列夫空间(Sobolev space )的概念。</br> == 参考来源 == {{reflist}} [[Category:300 科學總論]]
此頁面使用了以下模板:
Template:Main other
(
檢視原始碼
)
Template:Reflist
(
檢視原始碼
)
模块:Check for unknown parameters
(
檢視原始碼
)
返回「
光滑函数
」頁面