導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
18.221.52.77
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 几何拓扑学 的原始碼
←
几何拓扑学
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #008080" align= center| '''<big>几何拓扑学</big> ''' |- | [[File:314e251f95cad1c8a786afc145707009c93d71cffb8d.jpg|缩略图|居中|[https://i01piccdn.sogoucdn.com/ae413be0808ed686 原图链接][https://pic.sogou.com/pics?ie=utf8&p=40230504&interV=kKIOkrELjbgQmLkElbYTkKIMkrELjbkRmLkElbkTkKIRmLkEk78TkKILkbHjMz%20PLEDmK6IPjf19z%2F19z6RLzO1H1qR7zOMTMkjYKKIPjflBz%20cGwOVFj%20lGmTbxFE4ElKJ6wu981qR7zOM%3D_844253275&query=%E9%AB%98%E7%A3%81%E5%AF%BC%E7%8E%87%E6%9D%90%E6%96%99 来自搜狗的图片]]] |- | style="background: #008080" align= center| |- | align= light| |} '''几何拓扑学'''是数学中研究流形以及它们的嵌入的分支,具代表性的主题有纽结理论和辫子群。纽结理论和辫子群是几何拓扑学研究范围的典型例子。 =='''简介'''== 随着时间的变迁几何拓扑学几乎等同于考虑二维、三维、或者四维的低维拓扑学。1945年后拓扑学发展迅速,逐渐地数学家将这个学科分为三个分支:代数拓扑学(伦移等问题)几何拓扑学(有名的庞加莱猜想属于此类,已为俄罗斯数学家佩雷尔曼解决。)微分拓扑学研究可微分结构等等这些分支的基础是研究一般的拓扑空间的点集拓扑学。但是随着时间的发展这些区分又越来越显得是人为的[[区分]]了。 =='''评价'''== 1960年代初开始的许多研究成果导致几何拓扑学本身变化了。1961年史提芬·斯梅尔解决了高维中的庞加莱[[猜想]],这使得三维和四维显得尤其困难。事实上这些困难的解决需要新的技术,而与此同时高维提供的自由度使得换球术的问题也成为可计算的问题了。威廉·瑟斯顿在1970年代末提出的几何化猜想提供了在低维中几何与拓扑之间的关系的理论基础。瑟斯顿使用过去在数学中只是很弱地互相关联的分支的不同技术解决了Haken流体的几何化问题。1980年代初沃恩·琼斯发现的琼斯多项式为扭结理论提供了新的方向,同时也给数学物理与低维拓扑学之间至今为止依然不明了的关系提供了新的推动。<ref>[https://zhuanlan.zhihu.com/p/171756902 几何拓扑学]搜狗</ref> =='''参考文献'''== [[Category:310 數學總論]]
返回「
几何拓扑学
」頁面