導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.15.211.71
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 分子結構 的原始碼
←
分子結構
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" style="float:right; margin: -10px 0px 10px 20px; text-align:left" |<center>'''分子結構'''<br><img src="http://file03.16sucai.com/2017/1100/16sucai_v20161104180_a80.JPG" width="250"></center><small>[http://www.16sucai.com/2017/01/109457.html 圖片來自16素材網]</small> |} '''分子结构''',或称'''分子立体结构'''、'''分子形状'''、'''分子几何'''、'''分子几何构型''',建立在[[光谱学]]<ref>[https://www.zhihu.com/topic/19628810/hot 光谱学],知乎</ref> 数据之上,用以描述[[分子]]中[[原子]]的三维排列方式。分子结构在很大程度上影响了[[化学物质]]的[[反应性]]、[[极性]]、[[相态]]、[[颜色]]、[[磁性]]和[[生物活性]]。 分子结构最好在接近[[绝对零度]]的温度下测定,因为随着温度升高,分子转动也增加。[[量子力学]]和半实验的[[分子模拟]]计算可以得出分子形状,固态分子的结构也可通过[[X射线晶体学]]测定。体积较大的分子通常以多个稳定的[[构象]]存在,[[势能面]]中这些构象之间的[[能垒]]较高。 分子结构涉及原子在空间中的位置,与键结的[[化学键]]种类有关,包括[[键长]]、[[键角]]以及相邻三个键之间的[[二面角]]。 == 温度对分子結構的影响 == 由于分子中原子的运动由量子力学决定,因此“运动”这个概念也必须要建立在量子力学基础之上。总体(外部)的量子力学运动——如平移和旋转几乎不改变分子的结构(由旋转导致的[[科里奥利力]]和[[转动光谱|离心扭曲]]以及由此导致的形状变化在此可以忽略)。内部运动包括振动,隶属于谐波,即原子即使在绝对零度仍会在平衡间振荡。此时所有原子都处于振动[[基态]],具有[[零点能量]],振动模式的[[波函数]]也不是一个尖峰,而是有限宽度的指数。随着温度升高,振动模式(自由度)被热激发,用通俗的话讲是[[分子振动]]加快,而它们仍然只在分子特定部分振荡。 [[玻尔兹曼分布]]可以量度温度对[[分子振动]]的影响:<math>\exp\left( -\frac{\Delta E}{kT} \right) </math>,其中<math>\Delta E</math>是振动模式的激发能,<math>k</math>是[[玻尔兹曼常数]],<math>T</math>是绝对温度。在298K(25 °C)下,典型的玻尔兹曼因子值为:ΔE = 500 cm<sup>-1</sup> → 0.089;ΔE = 1000 cm<sup>-1</sup> → 0.008;ΔE = 1500 cm<sup>-1</sup> → 7 * 10<sup>-4</sup>。即,如果激发能为500 cm<sup>-1</sup>,那么大约9%的分子在室温时会处于热[[激发态]]。对[[水分子]]而言,其弯曲模式具有最低的激发能,大约为1600 cm<sup>-1</sup>,因此室温下水分子中振动速度比绝对零度时快的分子占不到0.07%。 虽然转动很难影响分子结构,但作为一个量子力学运动,相对振动而言它在低温下热激发程度较高。从[[经典力学]]角度来看即是,更多分子在高温下转动更快(它们具有更大的[[角速度]]和[[角动量]]);而从量子力学角度看则是,随温度升高,更多角动量较大的[[本征态]]开始聚集。典型的转动激发能数量级在几cm<sup>-1</sup>。 由于涉及转动态,很多光谱学的实验数据都被扩大了。而转动运动随温度升高而变得激烈,因此,低温下的分子结构数据往往更加可靠,而从高温下的光谱很难得出分子结构。 == 成键 == 根据定义,分子中的原子是由[[共价键]](包括[[单键]]、[[双键]]、[[叁键]]等)或/和[[离子键]]连结起来的,因此分子形状可通过'''键长'''、'''键角'''和'''二面角'''这些参数来阐明。键长被定义为任何分子中,两个原子中心间的平均距离;键角是相邻三个原子两条键之间的夹角;而二面角,或称扭转角,则相对于四个相邻原子而言,是前三个原子所形成的平面与剩下一根键之间所成的角度。 电子的量子力学性质决定分子结构,因此可通过[[价键理论]]近似来理解化学键类型对结构的影响。[[杂化轨道理论]]认为,先有[[原子轨道]]间的[[杂化]],才有化学键的生成。至于化学键,其中两种最常见的为[[σ键]]和[[π键]],而含[[离域电子]]的结构可借助[[分子轨道理论]]来理解。 研究原子和分子中电子的类波行为隶属于[[量子化学]]的范畴。 == 异构体 == 具有相同[[化学式]]但不同结构的物质被称为[[异构体]],它们常有不同的性质。 * [[纯净物]]只由异构体中的一种构成,因此所有分子结构相同。 * [[結構异构体]]中原子排列顺序不同,性质也常有不同,例如[[正丙醇]]和[[异丙醇]]。 ** [[官能团异构]]体是由于含有不同[[官能团]]而导致异构的异构体,例如[[醚]]和[[醇]]。 * [[立体异构体]]物理性质可能类似(例如熔点和沸点),但[[生化]]活性一般不同。这是由于它们具有[[手性]],必须要有特定的立体结构才可以与其他[[底物]]结合。一对立体异构体可使[[偏振光]]偏转相同的角度,但是在相反方向上。 * [[蛋白质折叠]]关系到[[高分子]][[蛋白质]]的构象取向问题。 == 分子结构的类型 == 分子有六种基本形状类型: * [[直线形分子构型|直线型]]:所有原子处在一条直线上,键角为180°,例如[[二氧化碳]]<chem>O=C=O</chem>。 * [[平面三角形分子構型|平面三角形]]:所有原子处在一个平面上,三个周边原子均匀分布在中心原子周围,键角120°,例如[[三氟化硼]]<chem>BF3</chem>。 * [[正四面体|四面体]]:四个周边原子处在四面体的四个[[頂點 (分子構型)|顶点]],中心原子位于四面体中心。理想键角<math>\arccos{-\frac{1}{3}}\approx 109^\circ 28'</math>,例如[[甲烷]]<chem>CH4</chem>。 * [[八面体]]:六个周边原子处在八面体的六个[[頂點 (分子構型)|顶点]],中心原子位于四面体中心。理想键角90°,例如[[六氟化硫]]SF<sub>6</sub>。 * 锥形 **[[三角锥]]:四面体型的一条键被[[孤对电子]]占据,剩下三条键的形状即是三角锥型。由于孤对电子体积较大,三角锥形的键角较四面体形的键角要小。例如[[氨]]<chem>NH3</chem>,键角107.3°。 **[[四方锥]]:八面体型的一条键被孤对电子占据,剩下五条键的形状即是四方锥型,例如[[五氟化溴]]<chem>BrF5</chem>。 * [[角形分子構型|角形]]:与直线型相对,两条键的三个原子不在一条直线上。例如[[水分子|水]]H<sub>2</sub>O,键角104.5°。 除了上述的基本类型外,也存在以下的分子结构: * T形:此分子構型描述其中央原子有著三個配基的化合物形狀,二個鍵位於一直線上,另一個鍵則和上述二個鍵垂直,因此形成T形的結構,例如[[三氟化氯]]<chem>ClF3</chem>。根據價層電子對互斥理論,T形分子構型是三個配基和兩個中央原子的孤電子對相互作用造成的結果。。 * 三帽三角稜柱:分子構型描述有九個原子、原子基團或配基被安排在一個中心原子周圍的形狀,利用[[三側錐三角柱]](一個有著和三個矩形面相接觸的額外原子的三角柱)定義此種分子的頂點。這和帽狀方形反稜柱分子構型非常相似,並且在某些分子中對於此特定的幾何構型展現出一些爭議。[[九氫合錸(VII)酸鉀]]中的九氫合錸(VII)酸根離子<chem>ReH_9^2-</chem>通常被視為擁有三帽三角稜柱分子構型,雖然有時此幾何構型用帽狀方形反稜柱分子構型所取代。 * 三角稜形:分子構型描述有六個原子、原子基團或配基被安排在一個中心原子周圍的形狀,利用[[三角柱]]定義此種分子的[[頂點 (分子構型)|頂點]]。 * 五角平面:分子構型描述有五個原子、原子基團或配基被安排在一個中心原子周圍的形狀,利用五角型定義此種分子的頂點。 * 五角錐:分子構型描述有六個原子、原子基團或配基被安排在一個中心原子周圍的形狀,利用五角錐形定義此種分子的頂點。這是有著不均勻鍵角的少數分子鍵的其中一種。 * 帽狀方形:反稜柱分子構型描述有八個原子、原子基團或配基被安排在一個中心原子周圍的形狀,利用正四角錐反角柱定義此種分子的頂點。 正四角錐反角柱是一種有著正四角反稜柱的四角錐去連接到方形的底部。在這方面,這可以被看成「覆蓋的」正四角反稜柱(一個有著錐體豎立在某個方形面的正四角反稜柱)。這和三帽三角稜柱分子構型非常相似,並且在某些分子中對於此特定的幾何構型展現出一些爭議。九氫合錸(VII)酸根<chem>ReH{_9}^{2-}</chem>有時被視為擁有帽狀方形反稜柱分子構型,雖然有時她的幾何構型用三帽三角稜柱分子構型所取代。 * 扭曲或覆蓋孤電子對的八面體:分子構型描述有六個原子、原子基團或配基被安排在一個中心原子周圍的形狀(有著一電子對覆蓋著八面體),利用兩個倒立相連的三角錐形定義此種分子的頂點。這種形狀有著分子對稱性。 * [[方形反稜柱分子構型]]:有八個[[原子]]、[[原子基團]]或[[配體]]連接在一個中心原子周圍的分子構型,其分子形狀類似[[正四角反稜柱]]。像[[八氟合氙(VI)酸亞硝醯]]<chem>(NO)2XeF8</chem>中的八氟合氙(VI)酸根離子<chem>XeF_8^{2-}</chem>離子即為此構型。 * 蹺蹺板形:或稱蝴蝶骨型,是一種和中央原子有四個鍵結並擁有C2v對稱性的分子構型,名稱"蹺蹺板"的來源是因為其在觀察中看起來像蹺蹺板。和中央原子有四個鍵結的構型中,最常見的為四面體,或是較少見的,方形平面構型,所以蹺蹺板形分子構型就像他的名字一樣,是很少見的。 == 參考文獻 == {{reflist}} [[Category:340 化學總論]]
此頁面使用了以下模板:
Template:Main other
(
檢視原始碼
)
Template:Reflist
(
檢視原始碼
)
模块:Check for unknown parameters
(
檢視原始碼
)
返回「
分子結構
」頁面