導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.17.155.142
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 刘徽 的原始碼
←
刘徽
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{{Infobox person | 姓名 = 刘徽 | 图像 = [[File:刘徽.jpg|缩略图|center|[http://a1.att.hudong.com/87/97/19300534345514135025976562676_s.jpg 原图链接] [http://www.baike.com/wiki/刘徽%5B数学家%5D&prd%3Dshouye_newslist 来自互动百科]]] | 出生日期 = 约公元225年 | 逝世时间 = 约公元295年 | 出生地点 = 山东邹平县 | 国籍 = 中国 | 职业 = 数学家 | 主要成就 = 清理中国古代数学体系 、提出牟合方盖、重差术等方法 | 代表作品 = 《九章算术注》《海岛算经》 }} '''<big>刘徽 </big>''',(约225年-约295年),汉族,[[山东滨州邹平]]市 人,[[魏晋期间]]伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《[[九章算术注]]》和《[[海岛算经]]》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。 == 人物事迹 == 《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。刘徽在曹魏景初四年注《九章算术注》。 但因解法比较原始,缺乏必要的证明,刘徽则对此均作了补充证明。在这些证明中,显示了他在众多方面的创造性贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的[[立方根]]。在代数方面,他正确地提出了[[正负数]]的概念及其[[加减运算]]的法则,改进了线性方程组的解法。在几何方面,提出了"[[割圆术]]",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.1416的结果。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值。刘徽提出的计算圆周率的科学方法,奠定了此后千余年来中国圆周率计算在世界上的领先地位。 刘徽在数学上的贡献极多,在开方不尽的问题中提出“[[求徽数]]”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是[[圆周率]]精确计算的必要条件,而且促进了十进小数的产生;在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致;并在中国数学史上第一次提出了“[[不定方程问题]]”;他还建立了等差级数前n项和公式;提出并定义了许多数学概念:如幂([[面积]]);方程(线性方程组);正负数等等.刘徽还提出了许多公认正确的判断作为证明的前提.他的大多数推理、证明都合乎逻辑,十分严谨,从而把《[[九章算术]]》及他自己提出的解法、公式建立在必然性的基础之上。虽然刘徽没有写出自成体系的著作,但他注《九章算术》所运用的数学知识,实际上已经形成了一个独具特色、包括概念和判断、并以数学证明为其联系纽带的理论体系。 刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。《[[海岛算经]]》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。 [[File:T013b55119e2437e2dd.jpg|缩略图|刘徽画像]] == 个人成就 == 刘徽的数学成就大致为两方面:一是整理中国古代数学体系并奠定了它的理论基础,这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系: 数系理论 ①用数的同类与异类阐述了[[通分]]、[[约分]]、四则运算,以及繁分数化简等的运算法则;在开方术 的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。 ②在筹式演算理论方面, 先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的[[增广矩阵]]。 ③在勾股理论方面 逐一论证了有关[[勾股定理]]与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。 面积与体积理论 用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。 二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见: ①割圆术与圆周率, 他在《九章算术?圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接[[六边形开始割圆]],每次边数倍增,算到192边形的面积,得到π=157/50=3.14,又算到3072边形的面积,得到π=3927/1250=3.1416,称为“徽率”。 ②刘徽原理 在《九章算术?阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。 “牟合方盖”说 在《九章算术 开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“[[牟合方盖]]”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。 方程新术 在《九章算术 方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。 [[File:Small89468614585461351458546135.jpg|缩略图|魏刘徽注]] 重差术 在自撰《[[海岛算经]]》中,他提出了重差术,采用了重表、连索和 累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的[[牛顿]]”。 == 代表著作 == 著作简介 其代表作《九章算术注》是对《九章算术》一书的注解。《九章算术》是中国流传至今最古老的数学专著之一,它成书于西汉时期。这部书的完成经过了一段历史过程,书中所收集的各种数学问题,有些是秦以前流传的问题,长期以来经过多人删补、修订,最后由西汉时期的数学家整理完成。现今流传的定本的内容在东汉之前已经形成。《九章算术》是中国最重要的一部经典数学著作,它的完成奠定了中国古代数学发展的基础,在中国数学史上占有极为重要的地位。现传本《九章算术》共收集了246个应用问题和各种问题的解法,分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章。 《九章算术》的产生是社会发展和数学知识长期积累的结果,它汇集了不同时期数学家的劳动成果。三国时的数学家刘徽认为:“周公制礼有九数,九数之流,则《九章》是矣。……汉北平侯[[张苍]]、大司农中丞[[耿寿昌]]皆以善算命世。苍等因旧文之遗残,各称删补。故校其目则与古或异,而所论多近语也。”根据刘徽的考证结果,《九章算术》源于周公时代的“九数”,而他所见到的《九章算术》是西汉时的张苍、耿寿昌在先秦遗文的基础上删补而成的,其中包括了大量[[西汉]]时补充的内容。根据历史文献和出土文物资料来分析,刘徽所言是可信的。《九章算术》所包含的各种算法是汉朝数学家们在秦以前流传下来的数学基础上,适应当时的需要补充修订而成的。按照刘徽的考证,张苍和耿寿昌都是参加过修订工作的主要数学家。《史记·张丞相列传》记载,张苍(约前250~前152)经历了秦、汉两个朝代,他在[[高帝]]六年(前201)以攻藏茶有功封为北平侯。“自秦时为柱下史,明天下图书计籍。又善用算律历。”他还“著书18篇,言阴阳律历事。”耿寿昌的生年年代不详,汉宣帝时官至大司农中丞,“以善为算,能商功利”得宠于皇帝(见《汉书·食货志》)。他于天文学主张[[浑天说]],[[甘露]]二年(前52)奏“以圆仪度日月行,考验天运状”(见《后汉书·律历志》)。张苍和耿寿昌都是数学名家,又身居高位,由他们主持修订先秦流传下来的《[[算术]]》是很自然的事情。根据刘徽的记载,他所注释的《九章算术》最后是由耿寿昌删定的。我们认为耿寿昌删补《九章算术》的年代可以定为这部书完成的年代。 著作影响 《九章算术》是由国家组织力量编纂的一部官方性数学教科书,对两汉时期数学的发展产生了很大的影响。《广韵》卷四有“九章术,[[汉许商]]、[[杜志]]、[[吴陈炽]]、[[王粲]]并善之”,《[[后汉书·马援传]]》有[[马续]](约70~141)“博观群籍,善九章算术”负记载。此外,史书中还有[[郑玄]](127~200)、[[刘洪]]等人“通九章算术”的记述。可知该书是当时学习数学的重要教材,在[[东汉光和]]二年(179)一块铜版上的铭文规定:“大司农以戊寅(138?)诏书,……特更为诸州作铜斗、斜、称。依黄钟律历,《九章算术》以均长短、轻重、大小,以齐七政,令海内都同。”这说明该书在东汉时期不仅广为流传,而且度量衡研制涉及的数学问题也要以书中的算法为依据。许商、杜志可能是《九章算书》成书后最早研究过该书的数学家。许商、杜志都是西汉后期的数学家。《汉书·艺文志》著录有《许商算术》26卷、《杜志算术》16卷。这两部书都是汉成帝三年(前26)尹咸校对数术著作之前撰写的。许商、杜志的著作完成年代与耿寿昌删补《九章算术》的年代相去不远,他们的数学著作应当是在研究了《九章算术》的基础上完成的。 《九章算术》不仅在中国数学史上占有重要地位,对世界数学的发展也有着重要的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法,在书中的方田、粟米、衰分、商功、均输等章已有了相当详备的叙述。而少广、盈不足、方程、勾股等章中的开立方法、盈不足术(双假设法)、[[正负数]]概念、线性联立方程组解法、整数勾股弦的一般公式等内容都是世界数学史上的卓越成就。 传本《九章算术》有刘徽注和唐李淳风等的注释。刘徽是中国古代杰出的数学家,他生活在三国时代的[[魏国]]。《隋书·律历志》论历代量制引商功章注,说“[[魏陈留王景元]]四年(263)刘徽注《九章》。”他的生平不可详考。刘徽的《九章》注不仅在整理古代数学体系和完善古算 理论方面取得了重要成就,而且提出了丰富多彩的创见和发明。刘徽在算术、代数、几何等方面都有杰出的贡献。例如,他用比率理论建立了数与式的统一的理论基础,他应用了出入相补原理和极限方法解决了许多面积和体积问题,建立了独具风格的面积和体积理论。他对《九章》中的许多结论给出了严格的证明,他的一些方法对后世有很大启发,即使对现今数学也有可借鉴之处。 [[File:九章算术.jpg|缩略图|九章算术[http://www.sohu.com/a/111616282_443046 图片来自搜狐网]]] == 史书记载 == 《晋书卷一十六志第六》:魏景元四年,刘徽注《九章》云:王莽时刘歆斛尺弱于今尺四分五厘,比魏尺其斛深九寸五分厘;即荀勖所谓今尺长四分半是也。 魏陈留王景元四年,刘徽注《九章商功》曰:「当今大司农斛,圆径一尺三寸五分五厘,深一尺,积一千四百四十一寸十分寸之三。王莽铜斛,于今尺为深九寸五分五厘,径一尺三寸六分八厘七毫。以徽术计之,于今斛为容九斗七升四合有奇。」<ref>[http://www.guoxue123.com/shibu/0101/00jsj/016.htm 晋书卷十七 志第七 ]国学网, 2019-1-29</ref> 《宋书卷十三志第三》:汉时斛铭,刘歆诡谬其数,此则算氏之剧疵也。《乾象》之弦望定数,《景初》之交度周日,匪谓测候不精,遂乃乘除翻谬,斯又历家之甚失也。及郑玄、阚泽、王蕃、刘徽,并综数艺,而每多疏舛。<ref>[http://www.guoxue123.com/shibu/0101/00ss/012.htm 宋书卷十三 志第三◎历下]国学网, 2019-1-29</ref> ==视频 == '''最早计算出圆周率是魏晋时期的刘徽,但最有名的确是祖冲之'''<br> {{#ev:youku|XNDE3NDMzMjk4NA}} ==参考资料 == [[Category:东汉人物]] [[Category:数学家]]
此頁面使用了以下模板:
Template:Br separated entries
(
檢視原始碼
)
Template:Infobox
(
檢視原始碼
)
Template:Infobox person
(
檢視原始碼
)
Template:Infobox person/core
(
檢視原始碼
)
Template:Main other
(
檢視原始碼
)
模块:Arguments
(
檢視原始碼
)
模块:Infobox
(
檢視原始碼
)
模块:InfoboxImage
(
檢視原始碼
)
模块:Navbar
(
檢視原始碼
)
模块:Separated entries
(
檢視原始碼
)
模块:TableTools
(
檢視原始碼
)
返回「
刘徽
」頁面