導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.133.153.224
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 广义函数论 的原始碼
←
广义函数论
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #008080" align= center| '''<big>广义函数论</big> ''' |- | [[File:2934349b033b5bb589e3049f33d3d539b600bc9e.jpg|缩略图|居中|[https://i01piccdn.sogoucdn.com/ae413be0808ed686 原图链接][https://pic.sogou.com/pics?ie=utf8&p=40230504&interV=kKIOkrELjbgQmLkElbYTkKIMkrELjbkRmLkElbkTkKIRmLkEk78TkKILkbHjMz%20PLEDmK6IPjf19z%2F19z6RLzO1H1qR7zOMTMkjYKKIPjflBz%20cGwOVFj%20lGmTbxFE4ElKJ6wu981qR7zOM%3D_844253275&query=%E9%AB%98%E7%A3%81%E5%AF%BC%E7%8E%87%E6%9D%90%E6%96%99 来自搜狗的图片]]] |- | style="background: #008080" align= center| |- | align= light| |} 《'''广义函数论'''》是2010年3月高等教育出版社出版的图书,作者是L.施瓦兹。 =='''简介'''== 《广义函数论》是关于广义函数的第一本[[专著]]。全书共分九章。书中系统总结、高度概括了作者L.施瓦兹当年得以获得“菲尔兹奖”的主要工作。讨论了广义函数的各种基本性质、运算与变换,特别是阐明了著名的Dirac函数其实是一个测度而不是一个函数。从而为Dirac测度在量子力学以及其他学科中的广泛应用打下了坚实的数学基础。《广义函数论》包含了当时与广义函数论有关的许多重要的理论和原始思想。在其法文版首次出版后半个多世纪的今天仍有理论价值和参考价值,尤其适合于数学系高年级本科生或研究生研读。 =='''评价'''== 古典函数概念的推广。关于广义函数的研究构成了泛函分析中有着广泛应用的一个重要分支。历史上第一个广义函数是由物理学家P.A.M.狄拉克引进的,他因为陈述量子力学中某些量的关系时需要引入了“函数”δ(x):当x≠0时 ,δ(x)=0 ,但按20世纪前所形成的数学概念是无法理解这样奇怪的函数的。然而物理学上一切点量,如点质量、点电荷、偶极子、瞬时打击力、瞬时源等物理量用它来描述不仅方便、物理含义清楚,而且当它被当作普通函数参加运算,如对它进行微分和傅里叶变换,将它参与微分方程求解等所得到的数学结论和物理结论是吻合的。这就迫使人们要为这类怪函数确立严格的数学基础。最初理解的方式之一是 把这种怪 函数设想成直 线上某种分布 所相应的“密度”函数。所以广义函数又称为分布,广义函数论又称分布理论。用分布的观念为这些怪函数建立基础虽然很直观,但对于复杂情况就又显得繁琐而不很明确。后来随着泛函分析的发展,L.施瓦尔茨(1945)用泛函分析观点为广义函数建立了一整套严格的理论,接着I.M.盖尔范德对广义函数论又作了重要发展。从此,广义函数被广泛地应用于数学、物理、力学以及分析数学的其他各个分支,例如微分方程、随机过程、流形理论等等,它还被应用到群的表示理论,特别是它有力地促进了偏微分方程近30年来的发展。<ref>[https://zhuanlan.zhihu.com/p/171756902 广义函数论]搜狗</ref> =='''参考文献'''== [[Category:310 數學總論]]
返回「
广义函数论
」頁面