導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
52.14.6.41
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 数据流 的原始碼
←
数据流
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #008080" align= center| '''<big>数据流</big> ''' |- | [[File:Bd315c6034a85edf33b7197244540923dd5475ac.jpg|缩略图|居中|[https://bkimg.cdn.bcebos.com/pic/bd315c6034a85edf33b7197244540923dd5475ac?x-bce-process=image/resize,m_lfit,w_268,limit_1/format,f_jpg 原图链接][https://baike.baidu.com/item/%E6%95%B0%E6%8D%AE%E6%B5%81 来自搜狗的图片]]] |- | style="background: #008080" align= center| |- | align= light| |} '''数据流'''(data stream)是一组有序,有起点和终点的字节的数据序列。包括输入流和输出流。数据流最初是通信领域使用的概念,代表传输中所使用的信息的数字编码信号序列。这个概念最初在1998年由Henzinger在文献87中提出,他将数据流定义为“只能以事先规定好的顺序被读取一次的数据的一个序列”。 =='''简介'''== 需要以近实时的方式对更新流进行复杂分析。对以上领域的数据进行复杂分析(如趋势分析,预测)以前往往是(在数据仓库中)脱机进行的,然而一些新的应用(尤其是在网络安全和国家安全领域)对时间都非常敏感,如检测互联网上的极端事件、欺诈、入侵、异常,复杂人群监控,趋势监控(track trend),探查性分析(exploratory analyses),和谐度分析(harmonic analysis)等,都需要进行联机的分析。在此之后,学术界基本认可了这个定义,有的文章也在此基础上对定义稍微进行了修改。例如,S. Guha等[88]认为,数据流是“只能被读取一次或少数几次的点的有序序列”,这里放宽了前述定义中的“一遍”限制。为什么在数据流的处理中,强调对数据读取次数的限制呢?S. Muthukrishnan[89]指出数据流是指“以非常高的速度到来的输入数据”,因此对数据流数据的传输、计算和存储都将变得很困难。在这种情况下,只有在数据最初到达时有机会对其进行一次处理,其他时候很难再存取到这些数据(因为没有也无法保存这些数据)。 =='''评价'''== 这是指数据属性(维)的取值范围非常大,可能取的值非常多,如地域、手机号码、人、网络节点等。这才是导致数据流无法在内存或硬盘中存储的主要原因。如果维度小,即使到来的数据量很大,也可以在较小的存储器中保存这些数据。例如,对于无线通信网来说,同样的100万条通话记录,如果只有1000个用户,那么使用1000个存储单位就可以保存足够多和足够精确的数据来回答“某一用户的累计通话时间有多长”的问题;而如果共有100000个用户,要保存这些信息,就需要100000个存储单位。数据流数据的属性大多与地理信息、IP地址、手机号码等有关,而且往往与时间联系在一起。这时,数据的维度远远超过了内存和[[硬盘容量]],这意味着系统无法完整保存这些信息,通常只能在数据到达的时候存取数据一次。<ref>[https://baijiahao.baidu.com/s?id=1705411802975851384&wfr=spider&for=pc 数据流]搜狗</ref> =='''参考文献'''== [[Category:470 製造總論]]
返回「
数据流
」頁面