導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.15.211.143
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 聚光光伏 的原始碼
←
聚光光伏
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #FF2400" align= center| '''<big>聚光光伏</big>''' |- |<center><img src=https://so1.360tres.com/t0124edb32b89f27986.jpg width="300"></center> <small>[https://baike.so.com/gallery/list?ghid=first&pic_idx=1&eid=9215926&sid=9549221 来自 呢图网 的图片]</small> |- | style="background: #FF2400" align= center| '''<big></big>''' |- | align= light| 中文名;聚光光伏 外文名;CPV 12年销售额;3.25亿美元 显著优点;高光电转换效率 |} '''聚光光伏'''(CPV)是指将汇聚后的太阳光通过高转化效率的光伏电池[[直接]]转换为电能的技术,CPV是 聚光太阳能发电技术中最典型的[[代表]]。<ref>[http://www.xxxx.html 聚光光伏] , OFweek半导体照明网,2023年1月29日 </ref> ==简介== 使用晶硅电池和薄膜电池进行光电转换,分别是第一、第二代太阳能利用[[技术]],均已得到了广泛应用。利用光学元件将太阳光汇聚后再进行利用发电的聚光太阳能技术,被认为是太阳能发电未来发展趋势的第三代技术。 ==市场展望== 据IMSResearch最新发布的报告透露,2012年聚光光伏市场规模将实现翻番,达到近90MW,销售额达3.25亿美元。此外,IMSResearch预计到2016年这一新兴技术的装机量将快速发展,总装机量将达到近1.2GW。 IMSResearch日前发布的《2012年全球聚光光伏市场》报告指出,到2012年聚光光伏市场装机量将达到近90MW,同时营收将增长逾60%至3.25亿美元。这家研究公司[[预测]],尽管受到来自传统光伏系统强有力的竞争,但聚光光伏系统在目标市场仍然充满吸引力。IMSResearch分析师以及这份报告的作者之一JemmaDavies认为:"聚光光伏系统供应商正被迫不断削减成本,从而使CPV系统成本能与快速下跌的光伏系统成本相竞争。相对来说,聚光光伏仍是新兴技术,面临着其可融资性的问题。尽管如此,聚光光伏系统供应商仍在美国市场取得了很大的进展,预计2012年市场占有率将达到13%,到2016年将进一步增至27%。" 虽然长远来看,聚光光伏市场仍将是一个细分市场,但这份报告发现,聚光光伏的发展前景仍然十分[[乐观]]。到2016年,聚光光伏将有望达到适宜其发展的高直接正常辐射(DNI,DirectNormalIrradiation)地区(通常是DNI高于6kWh/平米/日的地区)总装机量的18%。2012年,高倍聚光光伏系统(HCPV)是市场主流。然而,据预测今后五年低倍聚光光伏系统(LCPV)装机量将快速增长,到2016年将占据聚光光伏市场20%的市场份额。这份报告的另一位作者SamWilkinson补充道:"目前低倍聚光光伏系统供应商尚未大举进入市场。然而,随着SunPower等知名企业进驻,2013年装机量将大幅增长,最终这些产品将占据一定的市场份额。" 据该报告透露,最具吸引力的聚光光伏市场将是美国、[[中美洲]]、中东及非洲市场(尤其是南非)。尤其在光照充足的美国西南部、智利、沙特阿拉伯、摩洛哥等地区,聚光光伏系统将呈现高速发展态势。预计至2016年,聚光光伏系统将占据这些地区光伏装机市场27%的份额。 IMSResearch在这份2012年报告中提供了30多家聚光光伏系统厂商的[[资料]]。截至2011年底为止,由于市场体量尚小,仅前五家厂商就把持了聚光光伏总装机量的90%。Amonix曾是聚光光伏市场最大的供应商,然而随着今年初该公司停业及新厂商的进入,市场竞争格局将发生重大改变。据该报告透露,Soitec和SolFocus等厂商将在2012年的聚光光伏市场获得更大的市场份额。 ==技术难点== CPV太阳能发电系统原理比较简单,为什么到现在全世界也没有几家公司做出特别稳定且便宜的发电系统呢!在CPV领域原则上讲聚光倍数越高造价就越便宜但是使用聚光的方式就会出现以下问题。 1、让单晶硅承受较高倍聚光 虽然砷化镓可以承受1000倍的光强,但是现在砷化镓价格昂贵,并且砷化镓中的砷是剧毒[[物质]],不可能大幅度的降低制造成本,另外在以环保为主题的国际环境下也不可能大量使用,最后只能是单晶硅;但是单晶硅一般只能承受3到5倍的光强,在CPV领域3到5倍的聚光几乎不怎么能降低成本,要想大幅度降低成本必须达到10左右。为了达到10倍的聚光必须用特制的单晶硅。 2、散热: 普通的硅光电池板在夏日中午时温度能到75度以上,普通的硅电池板在两倍太阳光强下[[时间]]一长就会起泡,在5倍太阳光强下10分钟就会就会起泡,在10倍太阳光强下5分钟就会起泡,起泡后太阳能电池片就会被氧化,在很短的时间内就会大幅降低效率,另外起泡后由于受热不均匀,常常有电池片炸裂的,这样系统就完全不可用。 如果太阳能电池板使用铝或者铜制的散热片进行自然散热,需要大量的散热片,造价特别贵,贵到比硅光片还要贵;如果使用强制风冷,就要使用大量的电能,得不偿失,并且风扇的寿命与可靠性不高,要想达到高可靠性必须有错误检查与冗余设置,这样就会成几倍增加造价,如果在[[夏天]]的中午风扇坏了,整个硅光电池板有可能被彻底烧坏。如果使用水冷除了要使用电力外,造价也不便宜,水冷由于管路多,连接点多,还需要水泵,故障点必然多,可靠性还不如风冷,当然水冷的效率要高于风冷,但是在故障率决定一票否决制的太阳能系统中不可用。 3、反光板: 普通的镜子,塑料反光板由于反射层与骨架层(比如玻璃)热胀冷缩系数不一样在室外2-4年反射面就会脱落,在沙漠高温差地方可能几个月就完全不能使用了,并且反光率会慢慢下降。 另外国内外也有用高反射率的薄铝板,但是这种铝板不能经受冰雹,并且不能擦洗,如果擦洗会产生永久性损伤,这种铝板使用期限为8年左右,并且反光率逐年降低,8年就基本只有40%的反光率了,远远不能达到太阳能系统要求的25年;铝板有贴保护膜的,但是保护膜造价高,也不防冰雹,不能解决所有[[问题]]。另外为了降低成本铝板一般都为0.3毫米左右,这样加工特别困难,加工成本特别高。 4、跟踪器: 光伏电池只有在聚光器的焦点才能工作,因为地球阳每时每刻都在转动,所以必须使用跟踪器才能保证光伏电池处于聚光器的焦点;跟踪器是CPV系统的主要系统之一,没有跟踪器系统就不能运行,跟踪器除了保证系统能运行外还能比不带跟踪的系统平均多30-40%的电。但是跟踪器是机械结构,长年累月的运行会出[[故障]],并且会有磨损,跟踪器如果出现故障系统就不能运行(发不出电),如果有磨损了跟踪精度就会降低,由于CPV系统对跟踪精度是有要求的,如果精度降低整个发电系统就不能正常运行。 ==技术展望== 有别于传统硅晶型以及薄膜型,聚光型太阳光电(HCPV)的技术最显着的优点在于它的高光电转换效率。这种太阳电池芯片在聚焦太阳光500倍左右时它的光电转换效能介于36-40%之间,光电模组的效能在22-28%之间。整个系统的效能在18-20%之间。以年度发电量而言,在相同的条件下,系统(结合双轴追日技术)约是[[传统]]硅晶型的1.2-1.4倍左右 ,此点是HCPV技术的竞争优势。HCPV技术最适合应用于大型电厂,特别是在阳光日照充足、干燥、低湿度的地区 。 目前HCPV 的核心技术-三结化合物电池和高倍聚光技术的开发和制造已经突破了国外企业的封锁,目前在国内实现大规模量产的企业有国内上市企业三安光电旗下的日芯光伏,他们已经能够实现1000倍聚光和40%以上的光电转换效率。 日芯光伏科技有限公司参与了我国《聚光型光伏模块和模组设计鉴定和定型》认证技术规范制定[[工作]],为通过本次认证,日芯光伏科技有限公司经过了申请、送样、型式试验、工厂检查、合格评定、发证等认证环节,也为我国今后聚光光伏组件的质量认证工作积累了宝贵经验。 系统效率比较 能量转化效率 薄膜型太阳能 7%~9% 晶硅型太阳能 14%~17% 第一代核能电厂 30% 火力发电 36.8% 聚光光伏(CPV) 27%~30% 聚光光热 (CSP) 13%~19% ==优点问题== 第一, CPV技术由于光电转化效率高等特点,是能用于建造大型支撑电源的最理想的太阳能发电[[技术]]。 第二,与晶硅和薄膜太阳能发电技术相比,CPV目前3~4美元/Wp的建设成本并无优势,但随着生产规模的扩大、电池效率的提高、聚光模块的改进等,成本会大幅下降,潜在优势大。 第三,同等发电量情况下CPV电厂占地面积小,而且由于跟踪系统的倾角改变,阴影面积改变不影响地面[[生态]]。 第四, CPV系统的发电过程中几乎不耗水,仅需少量水用于清洁光伏组件的玻璃外壳,有明显的节水优势。 此外还有很多优势不再叙述,最为这样一个有优势的技术为何没有大范围应用呢,因为目前的技术还不成熟,还有很多[[问题]]遇难题需要解决,例如在技术问题上如何改进材料进一步提高光伏电池的耐光能力,高倍聚光下,如何解决光照不均匀,效率低的问题,还有如何实现产业的规模化自动化一体化,如何应对天气问题对聚光光伏的系统的影响,另外光强不均匀,会导致电池表面受热不均,故对材料的要求也很高,还有散热器性能的研发等等。正是由于这一系列的优势与问题,CPV系统没能真正发挥它的高效率,然而却给我们立下很大的探索和研究[[空间]],因此,CPV有着巨大的发展前景。 == 相关视频 == <center> {{#iDisplay:f0538sanq4j|480|270|qq}} <center>绿色能源高倍聚光太阳能发电宣传片</center> </center> == 参考资料 == [[Category: 970 技藝總論]]
返回「
聚光光伏
」頁面