導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
18.188.59.18
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 解释结构模型法 的原始碼
←
解释结构模型法
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- |<center><img src=http://img.mp.itc.cn/upload/20160825/a15142bdd1a64ca0b43773dba9836fb0_th.jpg width="350"></center> <small>[https://www.sohu.com/a/112055474_436683 来自 搜狐网 的图片]</small> |} '''解释结构模型法'''是一个名词术语。 汉字(拼音:hàn zì,注音符号:ㄏㄢˋ ㄗˋ),又称中文<ref>[https://www.sohu.com/a/513391189_120099892 中文为何越来越受欢迎?],搜狐,2021-12-30</ref>、中国字、方块字,是汉语的记录符号,属于表意文字的词素音节文字。世界上最古老的文字之一,已有六千多年的历史。在形体上逐渐由[[图形]]变为笔画,象形变为象征,复杂变为简单;在造字原则上从表形、表意到形声。除极个别汉字外(如瓩、兛、兣、呎、嗧等),都是一个汉字一个[[音节]]。 需要注意的是,日本、韩国、朝鲜、越南等国在历史上都深受汉文化的影响,甚至其语文都存在借用汉语言文字的现象<ref>[https://history.sohu.com/a/592891345_121160021 中国能屹立几千年不倒的精髓是什么?汉文化的诞生和传承是关键],搜狐,2022-10-15</ref>。 ==名词解释== 解释结构模型法是现代[[系统]][[工程]]中广泛应用的一种分析方法,是结构模型化技术的一种。它是将复杂的系统分解为若干子系统要素,利用人们的实践经验和知识以及计算机的帮助,最终构成一个多级递阶的结构模型。此模型以定性分析为主,属于概念模型,可以把模糊不清的思想、看法转化为直观的具有良好结构关系的模型。特别适用于变量众多、关系复杂而结构不清晰的系统分析中,也可用于方案的排序等。它的应用面十分广泛,从能源问题等国际性问题到地区经济开发、企事业甚至个人范围的问题等。 它在揭示系统结构,尤其是分析教学资源内容结构和进行学习资源设计与开发研究、教学过程模式的探索等方面具有十分重要作用,它也是教育技术学研究中的一种专门研究方法。 解释结构模型法的程序 ISM的工作程序分为以下七步: (1)实施ISM小组:一般由方法技术专家、协调人、参与者三方面人员组成; (2)设定关键问题; (3)选择构成系统的影响关键问题的导致因素; (4)列举各导致因素的相关性; (5)根据各要素的相关性,建立邻接矩阵和可达矩阵; (6)对可达矩阵分解后,建立结构模型; (7)根据结构模型建立解释结构模型。 解释结构模型的运用原理 ISM通过对表示有向图的相邻矩阵的逻辑运算,得到可达性矩阵,然后分解可达性矩阵,最终使复杂系统分解成层次清晰的多级递阶形式。解释结构模型在制订企业计划、城市规划等领域已广泛使用,尤其对于建立多目标、元素之间关系错综复杂的社会系统及其分析,效果更为显著。 解释结构模型用顶点Vi和Vj表示系统的元素(i=1,2,3…;j=1,2,3…),带箭头的边(Vi,Vj)表示两元素之间的关系,即可构成有向图(图1),用来表示有向图中各元素间连接状态的矩阵称作相邻矩阵A。当从Vi到Vj有带箭头的边连接时,矩阵元素aij取值为1;无连接时取值为零。可达性矩阵M是用矩阵形式反映有向图各顶点之间通过一定路径可以到达的程度,它通过以下计算求得:将相邻矩阵A加上单位矩阵I(矩阵中除主对角线上元素为1外,其余元素皆为零的矩阵),然后用布尔代数规则 (0+0=0,0+1=1,1+1=1;0×0=0,0×1=0,1×1=1)进行乘方运算,直到两个相邻幂次方的矩阵相等为止。相等的矩阵中幂次最低的矩阵即为可达性矩阵。图1所示有向图的可达性矩阵M如下:通过对可达性矩阵的分解(有区域分解和级间分解),即可建立系统的多级递阶结构模型。 多级递阶结构模型非常直观清楚地反映了该系统元素之间的结构关系。ISM方法使用方便,不需要高深的数学理论,易为系统分析人员所掌握。 ==参考文献== [[Category:800 語言學總論]]
返回「
解释结构模型法
」頁面