導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
18.219.207.115
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 RSA加密算法 的原始碼
←
RSA加密算法
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #008080" align= center| '''<big>RSA加密算法</big> ''' |- | [[File:D01373f082025aafcb78cac5fbedab64034f1a71.jpg|缩略图|居中|[https://baike.baidu.com/pic/%E8%92%99%E5%A5%87%C2%B7D%C2%B7%E8%B7%AF%E9%A3%9E/726966/1/a8014c086e061d95f662155f76f40ad162d9cab5?fr=lemma&ct=single 原图链接][https://baike.baidu.com/item/蒙奇•D•路飞/726966?fr=aladdin 来自搜狗的图片]]] |- | style="background: #008080" align= center| |- | align= light| |} '''RSA'''是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。 =='''简介'''== RSA公开密钥密码体制是一种使用不同的加密密钥与解密密钥,“由已知加密密钥推导出解密密钥在计算上是不可行的”密码体制。在公开密钥密码体制中,加密密钥(即公开密钥)PK是公开信息,而解密密钥(即秘密密钥)SK是需要保密的。加密算法E和解密算法D也都是公开的。虽然解密密钥SK是由公开密钥PK决定的,但却不能根据PK计算出SK。正是基于这种理论,1978年出现了著名的RSA算法,它通常是先生成一对RSA密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册。为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。这就使加密的计算量很大。为减少计算量,在传送信息时,常采用传统加密方法与公开密钥[[加密]]方法相结合的方式,即信息采用改进的DES或IDEA对话密钥加密,然后使用RSA密钥加密对话密钥和信息摘要。对方收到信息后,用不同的密钥解密并可核对信息摘要。 =='''评价'''== RSA在选择密码攻击面前显得很脆弱。一般攻击者是将某一信息进行下伪装,让拥有私钥的实体签名;然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构。前面已经提到,这个固有的问题来自于公钥密码系统的最基本的特征,即每个人都能使用公钥加密信息。从算法上无法解决这一问题,改进措施有两条:是采用好的公钥协议保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;二是决不对陌生人送来的随机文档签名,或签名时首先对文档作Hash处理,或同时使用不同的签名算法。RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,也并没有从理论上证明破译。RSA的难度与大数分解难度等价。因为没有证明破解RSA就一定需要做大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法,即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。<ref>[https://baike.baidu.com/reference/757860/1067RJdLe8f5fhzJhp-xGRdyBd178vQgibEDvxIl7PLuvxs6eK4br_Zc6O3Tl79B7utlaR99EClz8PQ-hqS0LK5QhA--zoPqjIji RSA加密算法]搜狗</ref> =='''参考文献'''== [[Category:310.]]
返回「
RSA加密算法
」頁面