求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

凝聚態物理學檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
凝聚態物理學

凝聚態物理學(condensed matter physics)是研究凝聚態物質的物理性質與微觀結構以及它們之間的關係,即通過研究構成凝聚態物質的電子、離子、原子及分子的運動形態和規律,從而認識其物理性質的學科。一方面,它是固體物理學的向外延拓,使研究對象除固體物質以外,還包括許多液態物質,諸如液氦、熔鹽、液態金屬,以及液晶、乳膠與聚合物 等,甚至某些特殊的氣態物質,如經玻色-愛因斯坦凝聚的玻色氣體和量子簡併的費米氣體。另一方面,它也引入了新的概念體系,既有利於處理傳統固體物理遺留的許多疑難問題,也便於推廣應用到一些比常規固體更加複雜的物質。從歷史來看,固體物理學創建於20世紀的30—40年代,而凝聚態物理學這一名稱最早出現於70年代,到了80—90年代,它逐漸取代了固體物理學作為學科名稱,或者將固體物理學理解為凝聚態物理學的同義詞。

簡介

凝聚態物理學是當今物理學最大也是最重要的分支學科之一。其研究層次,從宏觀、介觀到微觀,進一步從微觀層次統一認識各種凝聚態物理現象;物質維數從三維到低維和分數維;結構從周期到非周期和准周期,完整到不完整和近完整;外界環境從常規條件到極端條件和多種極端條件交叉作用,等等,形成了比固體物理學更深刻更普遍的理論體系。經過半個世紀多的發展,凝聚態物理學已成為物理學中最重要、最豐富和最活躍的學科,在諸如半導體、磁學、超導體等許多學科領域中的重大成就已在當代高新科學技術領域中起關鍵性作用,為發展新材料、新器件和新工藝提供了科學基礎。前沿研究熱點層出不窮,新興交叉分支學科不斷出現是凝聚態物理學的一個重要特點;與生產實踐密切聯繫是它的另一重要特點,許多研究課題經常同時兼有基礎研究和開發應用研究的性質,研究成果可望迅速轉化為生產力。凝聚態物理學起源於19世紀固體物理學和低溫物理學的發展。19世紀,人們對晶體的認識逐漸深入。1840年法國物理學家A·布拉維導出了三維晶體的所有14種排列方式,即布拉維點陣。1912年,德國物理學家馮·勞厄發現了X射線在晶體上的衍射,開創了固體物理學的新時代,從此,人們可以通過X射線的衍射條紋研究晶體的微觀結構。19世紀,英國著名物理學家法拉第在低溫下液化了大部分當時已知的氣體。1908年,荷蘭物理學家H·昂內斯將最後一種難以液化的氣體氦氣液化,創造了人造低溫的新紀錄-269 °C(4K),並且發現了金屬在低溫下的超導現象。超導具有廣闊的應用前景,超導的理論和實驗研究在20世紀獲得了長足進展,臨界轉變溫度最高紀錄不斷刷新,超導研究已經成為凝聚態物理學中最熱門的領域之一。 現今凝聚態物理學面臨的主要問題高溫超導體的理論模型。

評價

凝聚態物理學的基本任務在於闡明微觀結構與物性的關係,因而判斷構成凝聚態物質的某些類型微觀粒子的集體是否呈現量子特徵(波粒二象性)是至關緊要的。電子質量小,常溫下明顯地呈現量子特徵;離子或原子則由於質量較重,只有低溫下(約4K)的液氦或極低溫下(μK至nK)的鹼金屬稀薄氣體,原子的量子特徵才突出地表現出來。這也說明為何低溫條件對凝聚態物理學的研究十分重要。微觀粒子分為兩類:一類是費米子,具有半整數的自旋,服從泡利不相容原理;另一類是玻色子,具有整數的自旋,同一能態容許任意數的粒子占據。這兩類粒子的物理行為判然有別。[1]

參考文獻