求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

影像學檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
影像學
影像學.jpg

來自 孔夫子舊書網網站 的圖片

中文名:影像學

外文名:imaging

屬性:學科

隸屬:醫學

影像學不僅擴大了人體的檢查範圍,提高了診斷水平,而且可以對某一些疾病進行治療。這樣,就大大地擴展了本學科的工作內容,並成為醫療工作中的重要支柱。自倫琴(WilhelmConradRontgen)1895年發現X線以後不久,在醫學上,X線就被用於對人體檢查,進行疾病診斷,形成了放射診斷學(diagnosticradiology)的新學科,並奠定了醫學影像學(medicalimageology)的基礎。至今放射診斷學仍是醫學影像學中的主要內容,應用普遍。

簡述

50年代到60年代開始應用超聲與核磁掃描進行人體檢查,出現了超聲成像(ultrasonography,USG)和γ閃爍成像(γ-scintigraphy)。70年代和80年代又相繼出現了X線計算機體層成像(X-raycomputedtomography,X-rayCT或CT)、磁共振成像(magneticresonanceimage,MRI)和發射體層成像。(emissioncomputedtomography,ECT)如單光子發射體層成像(singlephotonemissioncomputedtomography,SPECT)與正電子發射體層成像(positronemissionemissiontomography,PET)等新的成像技術。這樣,僅100年的時間就形成了包括X線診斷的影像診斷學(diagnosticimageology)。雖然各種成像技術的成像原理與方法不同,診斷價值與限度亦各異,但都是使人體內部結構和器官形成影像,從而了解人體解剖與生理功能狀況以及病理變化,以達到診斷的目的;都屬於活體器官的視診範疇,是特殊的診斷方法。70年代迅速興起的介入放射學(interventionalradiology),即在影像監視下採集標本或在影像診斷的基礎上,對某些疾病進行治療,使影像診斷學發展為醫學影像學的嶄新局面。醫學影像學不僅擴大了人體的檢查範圍,提高了診斷水平,而且可以對某引些疾病進行治療。這樣,就大大地擴展了本學科的工作內容,並成為醫療工作中的重要支柱。

建國以來,中國醫學影像學有很大發展。專業隊伍不斷壯大,在各醫療單位都建有影像科室。現代的影像設備,除了常規的影像診斷設備外,USG、Ct、SPECT乃至MRI等先進設備已在較大的醫療單位應用,並積累了較為豐富的經驗。醫學影像學專業的書刊種類很多,在醫學、教學、科研、培養專業人材和學術交流等方面發揮了積極的作用。作為學術團體的全國放射學會和和各地分會,有力地推動了國內和國際間的學術交流。影像設備,包括常規的和先進的設備,如CT和MRI設備以及諸如膠片,顯、定影劑和造影劑等。中國已能自行設計、生產或組裝。

X成像

摺疊產生特性

(一)X線的產生 1895年,德國科學家倫琴發現了具有很高能量,肉眼看不見,但能穿透不同物質,能使熒光物質發光的射線。因為當時對這個射線的性質還不了解,因此稱之為X射線。為紀念發現者,後來也稱為倫琴射線,現簡稱X線(X-ray)。

一般說,高速行進的電子流被物質阻擋即可產生X線。具體說,X線是在真空管內高速行進成束的電子流撞擊鎢(或鉬)靶時而產生的。因此,X線發生裝置,主要包括X線管、變壓器和操作台。

X線管為一高真空的二極管,杯狀的陰極內裝着燈絲;陽極由呈斜面的鎢靶和附屬散熱裝置組成。

變壓器為提供X線管燈絲電源和高電壓而設置。一般前者僅需12V以下,為一降壓變壓器;後者需40~150kV(常用為45~90kV)為一升壓變壓器。

操作台主要為調節電壓、電流和曝光時間而設置,包括電壓表、電流表、時計、調節旋鈕和開關等。

在X線管、變壓器和操作台之間以電纜相連。

X線的發生程序是接通電源,經過降壓變壓器,供X線管燈絲加熱,產生自由電子並雲集在陰極附近。當升壓變壓器向X線管兩極提供高壓電時,陰極與陽極間的電勢差陡增,處於活躍狀態的自由電子,受強有力的吸引,使成束的電子,以高速由陰極向陽極行進,撞擊陽極鎢靶原子結構。此時發生了能量轉換,其中約1%以下的能量形成了X線,其餘99%以上則轉換為熱能。前者主要由X線管窗口發射,後者由散熱設施散發。

(二)X線的特性 X線是一種波長很短的電磁波。波長範圍為0.0006~50nm。X線診斷常用的X線波長範圍為0.008~0.031nm(相當於40~150kV時)。在電磁輻射譜中,居γ射線與紫外線之間,比可見光的波長要短得多,肉眼看不見。

除上述一般物理性質外,X線還具有以下幾方面與X線成像相關的特性:

穿透性:X線波長很短,具有很強的穿透力,能穿透一般可見光不能穿透的各種不同密度的物質,並在穿透過程中受到一定程度的吸收即衰減。X線的穿透力與X線管電壓密切相關,電壓愈高,所產生的X線的波長愈短,穿透力也愈強;反之,電壓低,所產生的X線波長愈長,其穿透力也弱。另一方面,X線的穿透力還與被照體的密度和厚度相關。X線穿透性是X線成像的基礎。

熒光效應:X線能激發熒光物質(如硫化鋅鎘及鎢酸鈣等),使產生肉眼可見的熒光。即X線作用於熒光物質,使波長短的X線轉換成波長長的熒光,這種轉換叫做熒光效應。這個特性是進行透視檢查的基礎。

攝影效應:塗有溴化銀的膠片,經X線照射後,可以感光,產生潛影,經顯、定影處理,感光的溴化銀中的銀離子(Ag )被還原成金屬銀(Ag),並沉澱於膠片的膠膜內。此金屬銀的微粒,在膠片上呈黑色。

而未感光的溴化銀,在定影及沖洗過程中,從X線膠片上被洗掉,因而顯出膠片片基的透明本色。依金屬銀沉澱的多少,便產生了黑和白的影像。所以,攝影效應是X線成像的基礎。

電離效應:X線通過任何物質都可產生電離效應。空氣的電離程度與空氣所吸收X線的量成正比,因而通過測量空氣電離的程度可計算出X線的量。X線進入人體,也產生電離作用,使人體產生生物學方面的改變,即生物效應。它是放射防護學和放射治療學的基礎。

成像原理

X線之所以能使人體在熒屏上或膠片上形成影像,一方面是基於X線的特性,即其穿透性、熒光效應和攝影效應;另一方面是基於人體組織有密度和厚度的差別。由於存在這種差別,當X線透過人體各種不同組織結構時,它被吸收的程度不同,所以到達熒屏或膠片上的X線量即有差異。這樣,在熒屏或X線上就形成黑白對比不同的影像。

因此,X線影像的形成,應具備以下三個基本條件:首先,X線應具有一定的穿透力,這樣才能穿透照射的組織結構;第二,被穿透的組織結構,必須存在着密度和厚度的差異,這樣,在穿透過程中被吸收後剩餘下來的X線量,才會是有差別的;第三,這個有差別的剩餘X線,仍是不可見的,還必須經過顯像這一過程,例如經X線片、熒屏或電視屏顯示才能獲得具有黑白對比、層次差異的X線影像。

人體組織結構,是由不同元素所組成,依各種組織單位體積內各元素量總和的大小而有不同的密度。人體組織結構的密度可歸納為三類:屬於高密度的有骨組織和鈣化灶等;中等密度的有軟骨、肌肉、神經、實質器官、結締組織以及體內液體等;低密度的有脂肪組織以及存在於呼吸道、胃腸道、鼻竇和乳突內的氣體等。

當強度均勻的X線穿透厚度相等的不同密度組織結構時,由於吸收程度不同,因此將出現如圖1-1-2所示的情況。在X線片上或熒屏上顯出具有黑白(或明暗)對比、層次差異的X線影像。

在人體結構中,胸部的肋骨密度高,對X線吸收多,照片上呈白影;肺部含氣體密度低,X線吸收少,照片上呈黑影。

X線穿透低密度組織時,被吸收少,剩餘X線多,使X線膠片感光多,經光化學反應還原的金屬銀也多,故X線膠片呈黑影;使熒光屏所生熒光多,故熒光屏上也就明亮。高密度組織則恰相反病理變化也可使人體組織密度發生改變。例如,肺結核病變可在原屬低密度的肺組織內產生中等密度的纖維性改變和高密度的鈣化灶。在胸片上,於肺影的背景上出現代表病變的白影。因此,不同組織密度的病理變化可產生相應的病理X線影像。

人體組織結構和器官形態不同,厚度也不一致。其厚與薄的部分,或分界明確,或逐漸移行。厚的部分,吸收X線多,透過的X線少,薄的部分則相反,因此,X線投影可有圖1-1-3所示不同表現。在X線片和熒屏上顯示出的黑白對比和明暗差別以及由黑到白和由明到暗,其界線呈比較分明或漸次移行,都是與它們厚度間的差異相關的。

A.X線透過梯形體時,厚的部分,X線吸收多,透過的少,照片上呈白影,薄的部分相反,呈黑影。白影與黑影間界限分明。熒光屏上,則恰好相反 B.X線透過三角形體時,其吸收及成影與梯形體情況相似,但黑白影是逐步過渡的,無清楚界限。熒光屏所見相反 C.X線透過管狀體時,其外周部分,X線吸收多,透過的少,呈白影,其中間部分呈黑影,白影與黑影間分界較為清楚。熒光屏所見相反。

由此可見,密度和厚度的差別是產生影像對比的基礎,是X線成像的基本條件。應當指出,密度與厚度在成像中所起的作用要看哪一個占優勢。例如,在胸部,肋骨密度高但厚度小,而心臟大血管密度雖低,但厚度大,因而心臟大血管的影像反而比肋骨影像白。同樣,胸腔大量積液的密度為中等,但因厚度大,所以其影像也比肋骨影像為白。需要指出,人體組織結構的密度與X線片上的影像密度是兩個不同的概念。

前者是指人體組織中單位體積內物質的質量,而後者則指X線片上所示影像的黑白。但是物質密度與其本身的比重成正比,物質的密度高,比重大,吸收的X線量多,影像在照片上呈白影。反之,物質的密度低,比重小,吸收的X線量少,影像在照片上呈黑影。因此,照片上的白影與黑影,雖然也與物體的厚度有關,但卻可反映物質密度的高低。在術語中,通常用密度的高與低表達影像的白與黑。例如用高密度、中等密度和低密度分別表達白影、灰影和黑影,並表示物質密度。人體組織密度發生改變時,則用密度增高或密度減低來表達影像的白影與黑影。

成像特點

X線圖像是X線束穿透某一部位的不同密度和厚度組織結構後的投影總和,是該穿透路徑上各層投影相互疊加在一起的影像。正位X線投影中,它既包括有前部,又有中部和總後的組織結構。重疊的結果,能使體內某些組織結構的投影因累積增益而得到很好的顯示,也可使體內另一些組織結構的投影因減弱抵消而較難或不能顯示。

由於X線束是從X線管向人體作錐形投射,因此,將使X線影像有一定程度放大並產生伴影(圖1-1-4)。伴影使X線影像的清晰度減低。

錐形投射還可能對X線影像產生如圖1-1-5所示的影響。處於中心射線部位的X線影像,雖有放大,但仍保持被照體原來的形狀,並無圖像歪曲或失真;而邊緣射線部位的X線影像,由於傾斜投射,對被照體則既有放大,又有歪曲。

X線檢查

X線圖像是由從黑到白不同灰度的影像所組成。這些不同灰度的影像反映了人體組織結構的解剖及病理狀態。這就是賴以進行X線檢查的自然對比。對於缺乏自然對比的組織或器官,可人為地引入一定量的在密度上高於或低於它的物質,便產生人工對比。因此,自然對比和人工對比是X線檢查的基礎。

摺疊普通檢查 包括熒光透視和攝影。

熒光透視(fluoroscopy):簡稱透視。為常用X線檢查方法。由於熒光亮度較低,因此透視一般須在暗室內進行。透視前須對視力行暗適應。採用影像增強電視系統,影像亮度明顯增強,效果更好。透視的主要優點是可轉動患者體位,改變方向進行觀察;了解器官的動態變化,如心、大血管搏動、膈運動及胃腸蠕動等;透視的設備簡單,操作方便,費用較低,可立即得出結論等。主要缺點是熒屏亮度較低,成像對比度及清晰度較差,難於觀察密度與厚度差別較少的器官以及密度與厚度較大的部位。例如頭顱、腹部、脊柱、骨盆等部位均不適宜透視。另外,缺乏客觀記錄也是一個重要缺點。

X線攝影(radiography):所得照片常稱平片(plainfilm)。這是應用最廣泛的檢查方法。優點是成像清晰,對比度及清晰度均較好;不難使密度、厚度較大或密度、厚度差異較小部位的病變顯影;可作為客觀記錄,便於複查時對照和會診。缺點是每一照片僅是一個方位和一瞬間的X線影像,為建立立體概念,常需作互相垂直的兩個方位攝影,例如正位及側位;對功能方面的觀察,不及透視方便和直接;費用比透視稍高。

這兩種方法各具優缺點,互相配合,取長補短,可提高診斷的正確性。

摺疊特殊檢查 體層攝影(tomography):普通X線片是X線投照路徑上所有影像重疊在一起的總和投影。一部分影像因與其前、後影像重疊,而不能顯示。體層攝影則可通過特殊的裝置和操作獲得某一選定層面上組織結構的影像,而不屬於選定層面的結構則在投影過程中被模糊掉。其原理如圖1-1-6所示。體層攝影常用以明確平片難於顯示、重疊較多和處於較深部位的病變。多用於了解病變內部結構有無破壞、空洞或鈣化,邊緣是否銳利以及病變的確切部位和範圍;顯示氣管、支氣管腔有無狹窄、堵塞或擴張;配合造影檢查以觀察選定層面的結構與病變。

軟線攝影:採用能發射軟X線的鉬靶管球,用以檢查軟組織,特別是乳腺的檢查。

其他:特殊檢查方法尚有①放大攝影,採用微焦點和增大人體與照片距離以顯示較細微的病變;

②熒光攝影,熒光成像基礎上進行縮微攝片,主要用於集體體檢;③記波攝影,採用特殊裝置以波形的方式記錄心、大血管搏動,膈運動和胃腸蠕動等。

在曝光時,X線管與膠片作相反方向移動,而移動的軸心即在選定層面的平面上。結果,在被檢查的部位內,只有選定的一層結構始終投影在膠片上的固定位置(A'),從而使該層面的結構清楚的顯影,而其前後各層結構則因曝光時,在膠片上投影的位置不斷移動而成模糊影像(B')

CT成像

基本原理 CT是用X線束對人體某部一定厚度的層面進行掃描,由探測器接收透過該層面的X線,轉變為可見光後,由光電轉換變為電信號,再經模擬/數字轉換器(analog/digital converter)轉為數字,輸入計算機處理。圖像形成的處理有如對選定層面分成若干個體積相同的長方體,稱之為體素(voxel)。掃描所得信息經計算而獲得每個體素的X線衰減係數或吸收係數,再排列成矩陣,即數字矩陣。數字矩陣可存貯於磁盤或光盤中。經數字/模擬轉換器(digital/analog converter)把數字矩陣中的每個數字轉為由黑到白不等灰度的小方塊,即象素(pixel),並按矩陣排列,即構成CT圖像。所以,CT圖像是重建圖象。每個體素的X線吸收係數可以通過不同的數學方法算出。

摺疊CT設備 CT設備主要有以下三部分:①掃描部分由X線管、探測器和掃描架組成;②計算機系統,將掃描收集到的信息數據進行貯存運算;③圖像顯示和存儲系統,將經計算機處理、重建的圖像顯示在電視屏上或用多幅照相機或激光照相機將圖像攝下。探測器從原始的1個發展到多達4800個。掃描方式也從平移/旋轉、旋轉/旋轉、旋轉/固定,發展到新近開發的螺旋CT掃描(spiralCt scan)。計算機容量大、運算快,可達到立即重建圖像。由於掃描時間短,可避免運動,例如,呼吸運動的干擾,可提高圖像質量;層面是連續的,所以不致於漏掉病變,而且可行三維重建,注射造影劑作血管造影可得CT血管造影(Ct angiography,CTA)。超高速CT掃描所用掃描方式與前者完全不同。掃描時間可短到40ms以下,每秒可獲得多幀圖像。由於掃描時間很短,可攝得電影圖像,能避免運動所造成的偽影,因此,適用於心血管造影檢查以及小兒和急性創傷等不能很好的合作的患者檢查。

摺疊圖像特點 CT圖像是由一定數目由黑到白不同灰度的象素按矩陣排列所構成。這些象素反映的是相應體素的X線吸收係數。不同CT裝置所得圖像的象素大小及數目不同。大小可以是1.0×1.0mm,0.5×0.5mm不等;數目可以是256×256,即65536個,或512×512,即262144個不等。顯然,象素越小,數目越多,構成圖像越細緻,即空間分辨力(spatialresolution)高。CT圖像的空間分辨力不如X線圖像高。

CT圖像是以不同的灰度來表示,反映器官和組織對X線的吸收程度。因此,與X線圖像所示的黑白影像一樣,黑影表示低吸收區,即低密度區,如肺部;白影表示高吸收區,即高密度區,如骨骼。但是CT與X線圖像相比,CT的密度分辨力高,即有高的密度分辨力(density resolutiln)。因此,人體軟組織的密度差別雖小,吸收係數雖多接近於水,也能形成對比而成像。這是CT的突出優點。所以,CT可以更好地顯示由軟組織構成的器官,如腦、脊髓、縱隔、肺、肝、膽、胰以及盆部器官等,並在良好的解剖圖像背景上顯示出病變的影像。

x 線圖像可反映正常與病變組織的密度,如高密度和低密度,但沒有量的概念。CT圖像不僅以不同灰度顯示其密度的高低,還可用組織對X線的吸收係數說明其密度高低的程度,具有一個量的概念。實際工作中,不用吸收係數,而換算成CT值,用CT值說明密度。單位為Hu(Hounsfield unit)。

水的吸收係數為10,CT值定為0Hu,人體中密度最高的骨皮質吸收係數最高,CT值定為+1000Hu,而空氣密度最低,定為-1000Hu。人體中密度不同和各種組織的CT值則居於-1000Hu到+1000Hu的2000個分度之間

由右上圖可見人體軟組織的CT值多與水相近,但由於CT有高的密度分辨力,所以密度差別雖小,也可形成對比而顯影。

CT值的使用,使在描述某一組織影像的密度時,不僅可用高密度或低密度形容,且可用它們的CT值平說明密度高低的程度。

CT圖像是層面圖像,常用的是橫斷面。為了顯示整個器官,需要多個連續的層面圖像。通過CT設備上圖像的重建程序的使用,還可重建冠狀面和矢狀面的層面圖像。

發展

醫學影像學發展新形勢有着不斷的發展。 在新世紀,知識與經濟的全球化和可持續發展將成為人類社會和經濟發展的主流。其中,生命科學和信息科學將是跨世紀科學發展的主要學科。

現代醫學是循證醫學,醫學影像學包涵了多種影像檢查、治療手段,已成為臨床最大的證源。值得一提的是,醫學影像學發展的趨勢是多種影像檢查手段的融合和優化選擇。此外,醫學影像學專業內部也需要信息交流和相互融合。

醫學影像學的發展表現為幾個方面,圖像數字化是影像發展的基本需要;設備網絡化可以提高設備的使用及保障效率;診斷綜合化能優化多種影像檢查,提高診斷的準確率;分組系統化能更緊密的與臨床結合,充分發揮綜合影像的優勢;而存檔無片化則是實現數字化管理。

影像全數字化建設的必要性

影像科室的數字化是醫院數字化建設的一個重要部分,它的主要優點表現為:能夠簡化和精確科室管理,提供全新的數字影像閱片方式;減少煩瑣的檔案管理;完整保留圖像數據,對科研、教學和解決未來可能的法律糾紛是最好的保障;減少膠片用量,節省相機、洗片機藥水。

影像科室的數字化還是臨床科室的需求。影像信息為臨床所用,在臨床診治過程中,特別能使急診科、手術室這些急需看到影像的部門迅速得到影像資料,提高急診、急救水平,明顯地加快醫療程序,並更好地為患者服務。

此外,影像科室的數字化也是學科發展的需求,影像資料的數字化是影像資源共享與遠程會診的前提,通過數字化、信息化、網絡化,醫院可實現管理工作的現代化。此外,數字化也為醫護人員提供了大量可隨意調用的影像數據和資料,從而產生更大的社會效益和經濟效益。

數字化大影像學

醫院數字化建設是電子工業、計算機技術和醫學結合的產物,它是影像學發展的必然,也是整個科學發展的必然。科學發展到今天,電子信息、計算機技術都得到了充分發展,它們結合的產物是數字化影像發展的起源和基礎。數字化影像學的主要優點表現為:能將模擬死圖像變成可再用或數據,進一步將二維的平面圖像變成多維的立體圖像;可以使影像定量診斷成為可能;徹底改變了傳統的醫學影像視觀、使用、存儲和管理方式。

數字化影像是把過去的模擬圖像變成了可再用的數據。過去,醫院給病人的是一張X光片,它只能記錄病人在當前條件下的影像,不能通過它看到新的東西。而數字化把影像變成一種活的數據,能把過去二維的平面圖像變成多維的立體圖像,從過去的只有一個平面和長寬變成了一個長、寬、高或者前後、左右、上下的立體圖像。

由於引入的功能不同,醫學影像學本身不僅反映三維立體結構,同時還包括諸如時間、分辨率等元素。在功能變化中,我們稱其為四維圖像。過去我們只能進行定性判定,沒有確切的數據對患者的片子做定量判定。藉助數字化影像,我們可以對這些做出準確測量。例如通過對患者影像CT值的測量,可以明確得出其病變的組織類型,從而做出診斷。

在數字化平台的基礎上,藉助數字化影像,我們可以清楚顯示出整個血管走行,甚至可以看到器官末梢的微細血管分支,這有利於我們探討血管的病變。

大影像及全數字化的標準

影像全數字化的標準應該表現為:放射科的全部檢查設備(XR、CT、MRI、DSA 等)都必須實現數字化;所有以顯示人體器官和組織大體形態學信息作為診斷目的的影像檢查手段(BU、NM)都必須實現數字化;醫院所有與影像診斷、治療相關的信息(申請、報告等)都必須實現數字化。

大影像的標準主要表現為組成診斷和治療兼備的現代醫學影像學科,包括放射(含XR、CT、MRI、DSA)、超聲、核醫學等多種診斷性成像技術和介入治療技術。同時在放射科內實現以系統分組而不是設備劃分。所謂系統分組,主要是指現代醫學影像學在分組時按照臨床學科的設置,從系統上劃分,這樣能同時綜合放射、超聲、核醫學等所有資料,這對病人的診斷來說也可以提供更多依據。這就是大影像,這樣才能使整個數字影像資料能夠互相利用起來。

全數字化大影像的意義

醫院實現全數字化為醫學影像學的發展如圖像調控、觀片模式、診斷質量、傳輸歸檔、信息交流、管理奠定了基礎。

它為臨床參考調閱影像提供了最佳便捷模式,同時遠程會診解決了邊遠地區百姓就醫的問題,促進了醫學影像教學和科研工作的開展。此外,全數字化提升了醫學影像學的平台,與生物技術、基因工程和醫學生物工程的結合將加速預防和診治技術的更新(PET-CT、MRI-CT)。

大影像學有利於醫院各種影像技術之間的選擇優化、信息互補,能夠實現診斷與治療之間的密切結合,極大地促進了醫學影像的人才培養和學科發展,同時還有利於國家級、多層次、高水平綜合影像科研項目的申報。

而全數字化大影像學則可以起到1+1≥2的效果,它是對醫學影像視觀、使用、存儲和管理方式的徹底改革。

數字化影像能夠徹底改變傳統醫學影像視觀。傳統的視觀一般是熒光屏透視或看膠片,而我們有很多種方法,藉助數字影像,我們在影像資料的使用上有了新的處理,其中包括存儲的管理方式。

數字化影像能帶給我們無窮的好處,數字化建設首先能夠滿足科室的需要,簡化科室的管理,可以減少醫生的勞動強度,並保留病人原始就診數據,從而使醫生在做診斷時更精細,對醫生的科研、教學都有很大的幫助,同時也可以解決未來可能發生的法律糾紛。

醫學影像學的發展,使醫生對圖像的調閱、圖像質量的控制等有了更大的主動性。而且,它也使得醫生工作的關鍵模式發生了改變。過去醫生看病人的CT片,都是一張一張來看的,而當下掃一個病人的圖像,就有1000幅圖像,一天下來會產生萬幅圖像,醫生根本沒法徹底看完這些片子。藉助醫學影像學,可以先對這些片子進行後處理,使之融合成為一個三維立體,這樣醫生就可以先看立體圖像。數字影像對診斷質量、圖文控制、傳輸歸檔、信息的交流以及科室管理等都奠定了基礎。它為臨床參考影像提供了一個最佳便捷的模式,解決了很多疑難問題和邊緣問題。

視頻

影像學有哪些檢查內容?

參考資料