求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

机器学习·工程师和科学家的第一本书查看源代码讨论查看历史

跳转至: 导航搜索

来自 孔夫子网 的图片

机器学习·工程师和科学家的第一本书》,[瑞典] 安德里亚斯·林霍尔姆等 著,出版社: 机械工业出版社。

机械工业出版社成立于1950年,是建国后国家设立的第一家科技出版社,前身为科学技术出版社,1952年更名为机械工业出版社[1]。机械工业出版社(以下简称机工社)由机械工业信息研究院作为主办单位,目前隶属于国务院国资委[2]

内容简介

在连贯的统计框架中,本书涵盖了一系列有监督的机器学习方法,包括基础方法(k-NN、决策树、线性和逻辑回归等)和高级方法(深度神经网络、支持向量机、高斯过程、随机森林和提升等),以及常用的无监督方法(生成模型、k-均值聚类、自动编码器、主成分分析和生成对抗网络等)。所有方法都包含详细的解释和伪代码。通过在方法之间建立联系,讨论一般概念(例如损失函数、 da似然、偏差-方差分解、核和贝叶斯方法),同时介绍常规的实用工具(例如正则化、交叉验证、评估指标和优化方法),本书始终将关注点放在基础知识上。最后两章为解决现实世界中有监督的机器学习问题和现代机器学习的伦理问题提供了实用建议。

目录

译者序

致谢

符号表

第1章引言1

1.1机器学习的示例1

1.2关于本书8

1.3拓展阅读9

第2章有监督学习:第一个方法10

2.1有监督机器学习10

2.1.1从有标记的数据中学习10

2.1.2数值型和分类型变量11

2.1.3分类和回归11

2.1.4在训练数据之外进行泛化14

2.2一个基于距离的方法:k-NN14

2.2.1k-NN算法14

2.2.2分类器的决策边界16

2.2.3k的选择17

2.2.4输入标准化19

……

参考文献