求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

汤笑之查看源代码讨论查看历史

跳转至: 导航搜索
汤笑之
北京交通大学

汤笑之,男,北京交通大学副教授。

人物简历

教育背景

Sept., 2011 – Jan., 2016 Beijing Jiaotong University, China Ph.D. Degree, Solid Mechanics

Feb., 2013 – Mar., 2014 Massachusetts Institute of Technology, US Visiting student, Computational Material Science

Sept., 2007 – Jul., 2010 Beijing Jiaotong University, China Master Degree, Solid Mechanics

Sept., 2003 – Jul., 2007 Harbin Engineering University, China Bachelor Degree, Engineering Mechanics

工作经历

Jan., 2019 – Present, Beijing Jiaotong University, China Associate Professor, Nano-Mechanics

Apr., 2016 – Dec., 2018 Beijing Jiaotong University, China Lecturer, Nano-Mechanics

研究方向

新型材料和结构的力学行为

科研项目

国家自然科学基金“面上”: 镍基单晶高温合金蠕变相关微结构演化的长时间尺度动力学研究, 2020-2023

国家自然科学基金"青年基金": 轻金属镁中界面迁移机制的微结构动力学研究, 2017-2019

学术成果

论文/期刊

As the first author or the corresponding author:

[1] Interstitial emission at grain boundary in nanolayered alpha-Fe. Tang X-Z, Guo Y-F, Fan Y, Yip S, Yildiz B. Acta Materialia. 2016;105:147-54.

[2] The engulfment of precipitate by extension twinning in Mg–Al alloy. Tang X-Z, Guo Y-F. Scripta Materialia. 2020;188:195-9.

[3] Strain rate effect on dislocation climb mechanism via self-interstitials. Tang X-Z, Guo Y-F, Sun L, Fan Y, Yip S, Yildiz B. Materials Science and Engineering: A. 2018;713:141-5.

[4] The surface nucleation of tension twin via pure-shuffle mechanism: The energy landscape sampling and dynamic simulations. Tang X-Z, Zu Q, Guo Y-F. Journal of Applied Physics. 2018;123:205112.

[5] The diffusive character of extension twin boundary migration in magnesium. Tang X-Z, Zu Q, Guo Y-F. Materialia. 2018;2:208-13.

[6] Atomistic study of pyramidal slips in pure magnesium single crystal under nano-compression. Tang X-Z, Guo Y-F, Xu S, Wang Y-S. Philosophical Magazine. 2015;95:2013-25.

[7] Atomistic simulations of interactions between screw dislocation and twin boundaries in zirconium. Tang X-Z, Zhang H-S, Guo Y-F. Transactions of Nonferrous Metals Society of China. 2018;28:1192-9.

[8] The interstitial emission mechanism in a vanadium-based alloy. Li X-T, Tang X-Z, Fan Y, Guo Y-F. Journal of Nuclear Materials. 2020;533:152121.

[9] The structure evolution of titanium–vacancy complex in a vanadium-based alloy. Li X-T, Tang X-Z, Guo Y-F. Journal of Materials Science. 2021;56:4433-45.

[10] Atomistic energy analysis on disconnection dipoles of extension twin in Mg. Zhang H-S, Tang X-Z, Mao Y, Guo Y-F. Materials Letters. 2020;273:127953.

[11] The deformation dynamics of Twinning-like Lattice Reorientation in magnesium nanowires. Zhang H-S, Tang X-Z, Mao Y, Guo Y-F. Materials Letters. 2019;254:198-201.

Other publications:

[12] Unusual shear induced unconventional {10-11} twinning in Mg. Ma S-L, Tang X-Z, Zu Q, Guo Y-F. Scripta Materialia. 2020;180:40-4.

[13] Atomistic study of nucleation and migration of the basal/prismatic interfaces in Mg single crystals. Zu Q, Tang X-Z, Xu S, Guo Y-F. Acta Materialia. 2017;130:310-8.

[14] The irrational shear of {10-11} twinning in Mg. Zu Q, Tang X-Z, Fu H, Peng Q-M, Guo Y-F. Materialia. 2019;5:100239.

[15] Plastic deformation mechanisms of hierarchical double contraction nanotwins in Mg. Hou X-W, Tang X-Z, Zu Q, Guo Y-F. Journal of Materials Science. 2020;55:11701-13.

[16] Double twin-like crystalline reorientations in Mg single crystals: Molecular dynamics simulations. Zu Q, Tang X-Z, Zhang H, Guo Y. Computational Materials Science. 2018;150:265-72.

[17] Interactive contraction nanotwins-stacking faults strengthening mechanism of Mg alloys. Peng Q, Sun Y, Ge B, Fu H, Zu Q, Tang X-Z, et al. Acta Materialia. 2019;169:36-44.

[18] The Plastic Deformation Mechanisms of hcp Single Crystals with Different Orientations: Molecular Dynamics Simulations. Ma Z-C, Tang X-Z, Mao Y, Guo Y-F. Materials. 2021;14:733.

[19] Plastic deformation mechanisms of nanotwinned Mg with different twin boundary orientations: molecular dynamics simulations. Hou X-W, Guo Y-F, Zhou L, Zu Q, Tang X-Z. Molecular Simulation. 2020;46:757-65.

[20] Molecular dynamics simulations of the orientation effect on the initial plastic deformation of magnesium single crystals. Zu Q, Guo Y-F, Xu S, Tang X-Z, Wang Y-S. Acta Metallurgica Sinica (English Letters). 2016;29:301-12.

[21] Analysis on dissociation of pyramidal I dislocation in magnesium by generalized-stacking-fault energy. Zu Q, Guo Y-F, Tang X-Z. Acta Metallurgica Sinica (English Letters). 2015;28:876-82.

[22] Twinnability of hcp metals at the nanoscale. Guo Y-F, Xu S, Tang X-Z, Wang Y-S, Yip S. Journal of Applied Physics. 2014;115:224902.

[23] Deformation Mechanisms at the Nanoscale in Magnesium Single Crystal. Guo Y-F, Xu S, Tang X-Z, Wang Y-S. Blucher Material Science Proceedings. 2014;1:13-.

[24] Compression deformation mechanisms at the nanoscale in magnesium single crystal. Guo Y, Tang X-Z, Wang Y, Wang Z, Yip S. Acta Metallurgica Sinica (English Letters). 2013;26:75-84.

[25] Atomistic simulation of the structural evolution in magnesium single crystal under c-axis tension. Qi H, Guo Y, Tang X-Z, Xu S. Acta Metallurgica Sinica(English Letters). 2011;24:487-94.[1]

参考资料