还原性气氛查看源代码讨论查看历史
还原性气氛(Reducing atmosphere)是指各种还原性气体和气体混合物。在钎焊过程中,这些还原性气体和气体混合物除保证钎焊区的低氧分压外,还能将氧化膜还原。还原性气体主要是氢和一氧化碳,但一氧化碳的还原性较氢气要弱的多。
具体应用
氢对金属氧化物的还原反应如下: MemOn +nH2←→mMe+nH2O 此可逆反应的平衡常数如下: KP =PH2/PH2O式中,PH2和PH2O指系统中氢和水蒸气的分压。 因此,氢对金属氧化物的还原反应的平衡常数,在等温条件下是氢中水蒸气含量的函数。气体中的水蒸气含量通常以气体的露点来表示。所谓露点,乃是指气体所含水蒸气开始凝聚成水的温度。气体的水蒸气含量越少,它的露点越低。因此,某金属氧化物与氢的还原反应的平衡,只有在一定的露点下才能达到。不同的氧化物由于稳定性不同,其在氢中还原反应的平衡常数是不同的,因而满足其平衡常条件的氢气露点也是不同的。下图示出了一些氧化物与氢的还原可逆反应与氢气露点及温度的关系曲线。图中位于曲线右下方的露点和温度值满足氧化物还原的条件,即金属氧化物被氢气还原;曲线左上方则对应于金属在氢气中发生氧化的条件,即反应式向左进行,金属被水蒸气氧化。因此,图中左上方的氧化物容易被氢气还原;右下方的金属氧化物不容易被氢气还原。氧化物被氢气还原的难易程度按以下次序列:ThO2→BeO→CaO→VO2→BaO→Al2O3→TiO2→VO→SiO2→NbO→Ta2O5→MnO→Cr2O3→ZnO→WO→MoO2→FeO。从图中又可看出,对任何氧化物来说,钎焊温度越高,还原氧化物所要求的氢气露点也越高,即钎焊温度的提高可以降低对氢气露点的要求。 对具体金属或合金来说,表面氧化物被氢气还原的难易程度主要取决于表面的氧化物种类。例如碳钢表面是铁的氧化物,还原氧化铁所要求的氢气露点相当高,很容易满足此要求。对于不锈钢如1Cr13,表面氧化物主要是Cr2O3。如钎焊温度为1000℃,则需使用露点低于-40℃的很纯的氢气才能还原其氧化物。对于1Cr18Ni9Ti不锈钢,表面不但被Cr2O3所覆盖,还可能有少量的氧化钛,因此要求氢气具有更低的露点和更高的钎焊温度,如在1100℃温度下使用露点低于-40℃的氢气,才能得到光亮的表面。对于含铝、钛量更高的高温含金,铝和铝合金,氢气无法使它们的氧化物还原,因为目前在工业上很难获得极纯(如露点低于-80℃)的氢气。 CO也是还原性气体,它对金属氧化物的还原反应如下: MemOn +nCO←→mMe+nCO2 此可逆反应的平衡常数如下: KP =PCO/PCO2 式中,PCO和PCO2分别表示系统中CO和CO2的分压。 因此,一氧化碳对金属氧化物的还原反应的平衡常数在等温条件下是CO和CO2含量的函数。下图列出了一些氧化物与一氧化碳的还原可逆反应与CO/CO2比值和温度的关系曲线。从此图可看出,Cu、Ni、Sn、Mo、W和Fe的氧化物可以被CO还原,其它氧化物就很难被CO还原了。CO的还原能力比氢气弱得多。
氢的还原能力虽然很强,但它有一个重要缺点,即它与空气的混合物(氢占4.1%~74%容积时)遇火会发生爆炸,因此使用时应十分小心。 为了减少爆炸危险,在钎焊钢时大多使用混合气体。其中第1到4类是烃类燃气(如天然气或丙烷)在空气中不完全燃烧的产品。当空气与天然气比值介于5:1到9.5:1之间时,此不完全燃烧反应是放热反应,反应放出的热量足以使气体继续燃烧,故称为放热型气体。其中第1类气体的还原性气体H2和CO的含量极少,只能用于钎焊铜和黄铜,不能钎焊钢,但没有爆炸危险。第2类气体的H2和CO含量提高,可用于钎焊低碳钢,但该气体的碳势很低,对含碳量高的表面有脱碳的倾向。当空气与天然气的比值小于5:1,即富天然气时。混合气体必须在一个从外部加热的,含有镍催化剂的加热室中才能燃烧,所以第3、4类气体称吸热型气体。这些气体的CO与H2的含量较高,并且几乎不含CO2,用控制露点的办法可以将吸热型气体的碳势控制在C 0.2%~1.3%的范围内,这就可能保证低碳、中碳和高碳钢的平衡条件,从而可避免渗碳和脱碳,可用于各种碳钢的加热。 [1]
简介
对于烧结粉末冶金制品最常用的保护气氛气体都含有还原性组分H2与CO,但有时固体碳与锂蒸气也具有还原作用。另外,CH4、C2H6、C3H8等碳氢化合物在炉内也可转化成还原性组分H2与CO。工业上一般使用的还原性气氛气体有H2、分解氨气体(75%H2+25%N2),氨不完全燃烧气体(N2+少量H2),碳氢化合物与水蒸气反应生成的气体(H2+CO或仅只H2),碳氢化合物不完全燃烧生成的放热性煤气(H2+CO+N2+CH4+CO2+H2O)和吸热性煤气(H2+CO+N2+CH4)等。由于这些气氛气体中往往含有H2,故对于含铂与钛的场合不适用,但对于其它所有金属的烧结都是适用的,可用来还原金属粉末颗粒表面的氧化膜及防止它们在烧结中发生氧化。可是,在烧结核燃料UO2的场合,为防止UO2氧化,用H2作为保护气氛气体。通常,还原性气氛气体都要进行精制以适当地除去O2与H2O,可是,除去的程度却因粉末压坯的种类与烧结条件及保护气氛气体的组成而异。 [2]
分类
还原性气氛可分为四类 (1)干燥的氢气和不含氧化或渗碳成分的分解氨; (2)含有低碳势或实际上具有脱碳作用的不纯的富放热型气氛; (3)具有中等碳势和有时加上高碳势的纯富放热型气氛,以及千燥的吸热型气氛或具有高碳势的生物碳气氛; (4)干的吸热型气氛,加上碳氢化物气体的渗碳气氛;可以加上氨气或碳氢化物的碳氮气氛。 “还原性气氛"就是指气氛与铁和氧化铁产生反应的气氛。 除了干燥氢和分解氨外,上述所有的气氛对Ni—Cr系合金来说全是氧化性的。甚至氢或分解氨也会使铬氧化,除非氢气非常干燥。由“还原性气氛”生成的氧化物和由空气生成的氧化物截然不同。由空气生成的是一种由绿色到黑色的氧化物,是不能渗透的保护层。它阻止了这一层以下的金属进一步被氧化。而高镍—铬电热元件在通入湿的还原性气氛时,生成的氧化物是绿色的,而且是可渗透的。这种气氛继续不断地侵蚀基体金属。这种侵蚀形式叫做矗绿色腐蚀"。发生在一些合金中,如80Ni—20Cr在湿氢气、富放热型气氛和湿吸热型气氛,在加热元件温度范围即900~1010℃(1650~1850°F)内发生。然而,至少含1.25%Si的35Ni—20Cr系合金完全可以阻止绿色腐蚀。因此在980℃(1800°F)以卞炉温的湿氢气中,建议用35Ni—20Cr,而在980℃(1800°F)以上用80Ni—20Cr。 然而,对于许多实际应用和气氛条件,采用经过铌(Nb)稳定过的80Ni—20Cr合金(1.25Nb),将消除或大大减少“绿色腐蚀"的影响。 干氢知分解氨是所使用的还原性气氛中对Ni—Cr系合金影响最小的气氛。当温度升到1090℃(2000°F)以上时,这种电热元件在干燥氢中比在空气中的寿命高。这是因为,在空气中氧化的速度在高温时变得更快了。 炉温在1090℃(2000°F)以上时,不纯的富放热型气氛对80Ni—20Cr的有害作用,要比高碳势的富放热型气氛、干的吸热型气氛或生物碳气氛对80Ni—20Cr的有害作用小。高碳势的气氛使镍—铬台金渗碳,高温时更甚。铬是强碳化物生成元素,并且可能吸取足够的碳而降低合金的熔点,并使电热元件引起局部熔化和熔解。基于这一原因,当在高碳势的还原性气氛下工作时,把80Ni—20Cr的工作温度限制在最高为1090℃(2000°F)是较安全的。除非可以降低电压使电热元件的温度下降。在1040℃(1900°F)以下,使用35Ni—20Cr合金是最好的,尽管有渗碳作用,但这种作用不一定意味着降低加热元件的寿命。
参考来源
- ↑ 氧化气氛和还原气氛怎样区分,什么是氧 百度知道
- ↑ 陆金喜丨如何提升曜变烧制的还原气氛知乎