求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

量子力学(quantum mechanics)查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索

量子力学(Quantum Mechanics),为物理学理论,是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。它与相对论一起构成现代物理学的理论基础。量子力学不仅是现代物理学的基础理论之一,而且在化学等学科和许多近代技术中得到广泛应用。[1]

[]

19世纪末,人们发现旧有的经典理论无法解释微观系统,于是经由物理学家的努力,在20世纪初创立量子力学,解释了这些现象。量子力学从根本上改变人类对物质结构及其相互作用的理解。除了广义相对论描写的引力以外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。

学科简史

量子力学是描述微观物质的理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础所进行的。 量子力学是描写原子和亚原子尺度的物理学理论。该理论形成于20世纪初期,彻底改变了人们对物质组成成分的认识。微观世界里,粒子不是台球,而是嗡嗡跳跃的概率云,它们不只存在一个位置,也不会从点A通过一条单一路径到达点B 。根据量子理论,粒子的行为常常像波,用于描述粒子行为的“波函数”预测一个粒子可能的特性,诸如它的位置和速度,而非确定的特性 。物理学中有些怪异的概念,诸如纠缠和不确定性原理,就源于量子力学 。 19世纪末,经典力学和经典电动力学在描述微观系统时的不足越来越明显。量子力学是在20世纪初由马克斯·普朗克、尼尔斯·玻尔、沃纳·海森堡、埃尔温·薛定谔、沃尔夫冈·泡利、路易·德布罗意、马克斯·玻恩、恩里科·费米、保罗·狄拉克、阿尔伯特·爱因斯坦、康普顿等一大批物理学家共同创立的。 量子力学的发展革命性地改变了人们对物质的结构以及其相互作用的认识。量子力学得以解释许多现象和预言新的、无法直接想象出来的现象,这些现象后来也被非常精确的实验证明。除通过广义相对论描写的引力外,至今所有其它物理基本相互作用均可以在量子力学的框架内描写(量子场论)。 量子力学并没有支持自由意志,只是于微观世界物质具有概率波等存在不确定性,不过其依然具有稳定的客观规律,不以人的意志为转移,否认宿命论。第一,这种微观尺度上的随机性和通常意义下的宏观尺度之间仍然有着难以逾越的距离;第二,这种随机性是否不可约简难以证明,事物是由各自独立演化所组合的多样性整体,偶然性与必然性存在辩证关系。自然界是否真有随机性还是一个悬而未决的问题,对这个鸿沟起决定作用的就是普朗克常数,统计学中的许多随机事件的例子,严格说来实为决定性的。 在量子力学中,一个物理体系的状态由波函数表示,波函数的任意线性叠加仍然代表体系的一种可能状态。对应于代表该量的算符对其波函数的作用;波函数的模平方代表作为其变量的物理量出现的概率密度。 量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。 1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出普朗克公式,正确地给出了黑体辐射能量分布。 1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。 1913年,玻尔在卢瑟福原有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,在轨道上运动时候电子既不吸收能量,也不放出能量。原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,对于进一步解释实验现象还有许多困难。 在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出了物质波这一概念。认为一切微观粒子均伴随着一个波,这就是所谓的德布罗意波。 德布罗意的物质波方程:,,其中,可以由得到。 由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。 1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔当一起建立起矩阵力学;1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式。 当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般都不具有确定的数值,而具有一系列可能值,每个可能值以一定的概率出现。当粒子所处的状态确定时,力学量具有某一可能值的概率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。 量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯(又称海森堡,下同)和泡利等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。 海森堡还提出了测不准原理,原理的公式表达如下

理论演变

理论的产生及其发展 量子力学是描述物质微观世界结构、运动与变化规律的物理科学。它是20世纪人类文明发展的一个重大飞跃,量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步做出重要贡献。 19世纪末正当经典物理取得重大成就的时候,一系列经典理论无法解释的现象一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以hf为最小单位,一份一份交换的。这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且跟"辐射能量与频率无关,由振幅确定"的基本概念直接相矛盾,无法纳入任何一个经典范畴。当时只有少数科学家认真研究这个问题。 爱因斯坦于1905年提出了光量子说。1914年,美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。 1913年丹麦物理学家玻尔为解决卢瑟福原子行星模型的不稳定性(按经典理论,原子中电子绕原子核作圆周运动要辐射能量,导致轨道半径缩小直到跌落进原子核),提出定态假设:原子中的电子并不像行星一样可在任意经典力学的轨道上运转,稳定轨道的作用量fpdq必须为h的整数倍(角动量量子化),即fpdq=nh,n称之为量子数。玻尔又提出原子发光过程不是经典辐射,是电子在不同的稳定轨道态之间的不连续的跃迁过程,光的频率由轨道态之间的能量差确定,即频率法则。这样,玻尔原子理论以它简单明晰的图像解释了氢原子分立光谱线,并以电子轨道态直观地解释了化学元素周期表,导致了72号元素铪的发现,在随后的短短十多年内引发了一系列的重大科学进展。这在物理学史上是空前的。 由于量子论的深刻内涵,以玻尔为代表的哥本哈根学派对此进行了深入的研究,他们对对应原理、矩阵力学、不相容原理、测不准关系、互补原理。量子力学的概率解释等都做出了贡献。 1923年4月美国物理学家康普顿发表了X射线被电子散射所引起的频率变小现象,即康普顿效应。按经典波动理论,静止物体对波的散射不会改变频率。而按爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,使光量子说得到了实验的证明。 光不仅仅是电磁波,也是一种具有能量动量的粒子。1924年美籍奥地利物理学家泡利发表了“不相容原理”:原子中不能有两个电子同时处于同一量子态。这一原理解释了原子中电子的壳层结构。这个原理对所有实体物质的基本粒子(通常称之为费米子,如质子、中子、夸克等)都适用,构成了量子统计力学———费米统计的基点。为解释光谱线的精细结构与反常塞曼效应,泡利建议对于原于中的电子轨道态,除了已有的与经典力学量(能量、角动量及其分量)对应的三个量子数之外应引进第四个量子数。这个量子数后来称为“自旋”,是表述基本粒子一种内在性质的物理量。 1924年,法国物理学家德布罗意提出了表达波粒二象性的爱因斯坦———德布罗意关系:E=hV,p=h/λ,将表征粒子性的物理量能量、动量与表征波性的频率、波长通过一个常数h相等。 1925年,德国物理学家海森伯和玻尔,建立了量子理论第一个数学描述———矩阵力学。1926年,奥地利科学家提出了描述物质波连续时空演化的偏微分方程———薛定谔方程,给出了量子论的另一个数学描述——波动力学。1948年,费曼创立了量子力学的路径积分形式。 量子力学在高速、微观的现象范围内具有普遍适用的意义。它是现代物理学基础之一,在现代科学技术中的表面物理、半导体物理、凝聚态物理、粒子物理、低温超导物理、量子化学以及分子生物学等学科的发展中,都有重要的理论意义。量子力学的产生和发展标志着人类认识自然实现了从宏观世界向微观世界的重大飞跃。 与经典物理学的界限 1923年,尼尔斯·玻尔提出了对应原理,认为量子数(尤其是粒子数)高到一定的极限后的量子系统,可以很精确地被经典理论描述。这个原理的背景是,事实上,许多宏观系统,可以非常精确地被经典理论,如经典力学和电磁学来描写。因此一般认为在非常“大”的系统中,量子力学的特性,会逐渐退化到经典物理的特性,两者并不相抵触。因此,对应原理是建立一个有效的量子力学模型的重要辅助工具。 量子力学的数学基础是非常广泛的,它仅要求状态空间是希尔伯特空间,其可观察量是线性的算符。但是,它并没有规定在实际情况下,哪一种希尔伯特空间、哪些算符应该被选择。因此,在实际情况下,必须选择相应的希尔伯特空间和算符来描写一个特定的量子系统。而对应原理则是做出这个选择的一个重要辅助工具。这个原理要求量子力学所做出的预言,在越来越大的系统中,逐渐近似经典理论的预言。这个大系统的极限,被称为“经典极限”或者“对应极限”。因此可以使用启发法的手段,来建立一个量子力学的模型,而这个模型的极限,就是相应的经典物理学的模型。 与狭义相对论的结合 量子力学在其发展初期,没有顾及到狭义相对论。比如说,在使用谐振子模型的时候,特别使用了一个非相对论的谐振子。在早期,物理学家试图将量子力学与狭义相对论联系到一起,包括使用相应的克莱因-高登方程,或者狄拉克方程,来取代薛定谔方程。这些方程虽然在描写许多现象时已经很成功,但它们还有缺陷,尤其是它们无法描写相对论状态下,粒子的产生与消灭。通过量子场论的发展,产生了真正的相对论量子理论。量子场论不但将可观察量如能量或者动量量子化了,而且将媒介相互作用的场量子化了。第一个完整的量子场论是量子电动力学,它可以完整地描写电磁相互作用。 一般在描写电磁系统时,不需要完整的量子场论。一个比较简单的模型,是将带电荷的粒子,当作一个处于经典电磁场中的量子力学物体。这个手段从量子力学的一开始,就已经被使用了。比如说,氢原子的电子状态,可以近似地使用经典的1/r电压场来计算。但是,在电磁场中的量子起伏起一个重要作用的情况下,(比如带电粒子发射一颗光子)这个近似方法就失效了。 强弱相互作用 强相互作用的量子场论是量子色动力学,这个理论描述原子核所组成的粒子(夸克和胶子)之间的相互作用。弱相互作用与电磁相互作用结合在电弱相互作用中。 万有引力 至今为止,仅仅万有引力无法使用量子力学来描述。因此,在黑洞附近,或者将整个宇宙作为整体来看的话,量子力学可能遇到了其适用边界。使用量子力学,或者使用广义相对论,均无法解释,一个粒子到达黑洞的奇点时的物理状况。广义相对论预言,该粒子会被压缩到密度无限大;而量子力学则预言,由于粒子的位置无法被确定,因此,它无法达到密度无限大,而可以逃离黑洞。因此20世纪最重要的两个新的物理理论,量子力学和广义相对论互相矛盾。寻求解决这个矛盾的答案,是理论物理学的一个重要目标(量子引力)。但是至今为止,找到引力的量子理论的问题,显然非常困难。虽然,一些亚经典的近似理论有所成就,比如对霍金辐射的预言,但是至今为止,无法找到一个整体的量子引力的理论。这个方面的研究包括弦理论等。

参考来源