餘波
人物履歷
教育背景
2002/09–2006/06,寧夏大學,數學與應用數學,學士
2006/09–2009/06,寧夏大學,應用數學,碩士
2010/09–2014/12,大連理工大學,計算力學,博士
工作經歷
2009/06–2010/08,大連理工大學,計算力學研究所,基礎算法庫建立
2014/12–2016/12,合肥工業大學,土木與水利工程學院,講師,碩導
2018/12–2020/01,澳大利亞新南威爾士大學,土木與環境工程學院,訪問學者
2016/12–至 今,合肥工業大學,土木與水利工程學院,副教授、博導
科研項目
[1] 國家自然科學基金面上項目,功能梯度材料瞬態傳熱問題的等幾何邊界元法及其反問題非迭代法研究,NSFC11872166,2019/01-2022/12,主持;
[2] 國家自然科學基金青年項目,功能梯度材料瞬態熱彈性分析的精細時域展開邊界元法研究,NSFC11502063,2016/01-2018/12,主持;
[3] 博士後外派交流項目,基於邊界元法和比例邊界有限元法的反問題研究,PC2018025,2018/12-2020/12,主持;
[4] 安徽省自然科學基金項目,幾何形狀反演問題的精細時域展開邊界元法研究,1608085QA07,2016/07-2018/06,主持;
[5] 中國博士後科學基金項目,基於CS和PTE算法的反幾何問題研究,2016M592042,2016/06-2018/05,主持
學術成果
[1] Yu, B.*, Cao, G., Meng, Z., Gong, Y., & Dong, C. (2021). Three-dimensional transient heat conduction problems in FGMs via IG-DRBEM. Computer Methods in Applied Mechanics and Engineering, 384, 113958.
[2] Yu, B., Cao, G., Gong, Y.*, Ren, S., & Dong, C. (2021). IG-DRBEM of three-dimensional transient heat conduction problems. Engineering Analysis with Boundary Elements, 128, 298-309.
[3] Yu, B.*, Cao, G., Huo, W., Zhou, H., & Atroshchenko, E. (2021). Isogeometric dual reciprocity boundary element method for solving transient heat conduction problems with heat sources. Journal of Computational and Applied Mathematics, 385, 113197.
[4] Yu, B.*, Hu, P., Saputra, A. A., & Gu, Y. (2021). The scaled boundary finite element method based on the hybrid quadtree mesh for solving transient heat conduction problems. Applied Mathematical Modelling, 89, 541-571.
[5] Xu, C., & Yu, B.* (2020). A novel domain propulsion and adaptive modified inversion method for the inverse geometry heat conduction analysis of FGMs. Numerical Heat Transfer, Part A: Applications, 78(8), 392-422.
[6] Yu, B.*, Wu, Y., Hu, P., Ding, J., Zhou, H., & Wang, B. (2020). A non-iterative identification method of dynamic loads for different structures. Journal of Sound and Vibration, 483, 115508.
[7] Yu, B.*, Tong, Y., Hu, P., & Gao, Q. (2020). A novel inversion approach for identifying the shape of cavity by combining Gappy POD with direct inversion scheme. International Journal of Heat and Mass Transfer, 150, 119365.
[8] Nie, C., & Yu, B*. (2019). Inversing heat flux boundary conditions based on precise integration FEM without iteration and estimation of thermal stress in FGMs. International Journal of Thermal Sciences, 140, 201-224.
[9] Yu, B.*, Xu, C., Zhou, H., & Cui, M. (2019). A novel non-iterative method for estimating boundary conditions and geometry of furnace inner wall made of FGMs. Applied Thermal Engineering, 147, 251-271.
[10] Chen, H. L., Yu, B., Zhou, H. L., & Meng, Z. (2019). Improved cuckoo search algorithm for solving inverse geometry heat conduction problems. Heat Transfer Engineering, 40(3-4), 362-374.
[11] Yu, B.*, Xu, C., Yao, W., & Meng, Z. (2018). Estimation of boundary condition on the furnace inner wall based on precise integration BEM without iteration. International Journal of Heat and Mass Transfer, 122, 823-845.
[12] Chen, H. L., Yu, B., Zhou, H. L., & Meng, Z. (2018). Identification of transient boundary conditions with improved cuckoo search algorithm and polynomial approximation. Engineering Analysis with Boundary Elements, 95, 124-141.
[13] Yu, B.*, Yao, W., Gao, Q., Zhou, H., & Xu, C. (2017). A novel non-iterative inverse method for estimating boundary condition of the furnace inner wall. International Communications in Heat and Mass Transfer, 87, 91-97.
[14] Yu, B.*, Zhou, H. L., Yan, J., & Meng, Z. (2016). A differential transformation boundary element method for solving transient heat conduction problems in functionally graded materials. Numerical Heat Transfer, Part A: Applications, 70(3), 293-309.
[15] Yu, B.*, Zhou, H. L., Chen, H. L., & Tong, Y. (2015). Precise time-domain expanding dual reciprocity boundary element method for solving transient heat conduction problems. International Journal of Heat and Mass Transfer, 91, 110-118.[1]