信息可视化
信息可视化,是一个跨学科领域,旨在研究大规模非数值型信息资源的视觉呈现(如软件系统之中众多的文件或者一行行的程序代码)。通过利用图形图像方面的技术与方法,帮助人们理解和分析数据。与科学可视化相比,信息可视化则侧重于抽象数据集,如非结构化文本或者高维空间当中的点(这些点并不具有固有的二维或三维几何结构).
信息可视化 | |
---|---|
目录
基本信息
数据可视化囊括了信息可视化、信息图形、知识可视化、科学可视化以及视觉设计方面的所有发展与进步。在这种层次上,如果加以充分适当的组织整理,任何事物都是一类信息:表格、图形、地图,甚至包括文本在内,无论其是静态的还是动态的,都将为我们提供某种方式或手段,从而让我们能够洞察其中的究竟.
找出问题的答案,发现形形色色的关系,或许还能让我们理解在其他形式的情况下不易发觉的事情。不过,如今在科学技术研究领域,信息可视化这条术语则一般适用于大规模非数字型信息资源的可视化表达。[1]
信息可视化致力于创建那些以直观方式传达抽象信息的手段和方法。可视化的表达形式与交互技术则是利用人类眼睛通往心灵深处的广阔带宽优势,使得用户能够目睹、探索以至立即理解大量的信息。
一些例子
各种各样数据结构的可视化需要新的用户界面以及可视化技术方法。这已经发展成为了一门独立的学科,也就是"信息可视化"。信息可视化与经典的科学可视化是两个彼此相关的领域,但二者却有所不同。在信息可视化当中,所要可视化的数据并不是某些数学模型的结果或者是大型数据集,而是具有自身内在固有结构的抽象数据。此类数据的例子包括:
1)编译器等各种程序的内部数据结构,或者大规模并行程序的踪迹信息;
2)WWW 网站内容; [2]
3)操作系统文件空间;
4)从各种数据库查询引擎那里所返回的数据,如数字图书馆。
信息可视化领域的另一项特点就是,所要采用的那些工具有意侧重于广泛可及的环境,如普通工作站、WWW、PC机等等。这些信息可视化工具并不是为价格昂贵的专业化高端计算设备而定制的。
信息可视化与可视化分析在目标和技术之间存在着部分重叠。虽然在这两个领域之间还没有一个清晰的边界,但大致有三个方面可以作以区分。科技可视化主要处理具有地理结构的数据,信息可视化主要处理像树、图形等抽象式的数据结构,可视化分析则主要挖掘数据背景的问题与原因。
与可视化分析论之间的联系
就目标和技术方法而言,信息可视化与可视化分析论之间存在着一些重叠。当前,关于科学可视化、信息可视化及可视化分析论之间的边界问题,还没有达成明确清晰的共识。不过,大体上来说,这三个领域之间存在着如下区别:
1)科学可视化处理的是那些具有天然几何结构的数据(比如,MRI数据、气流);
2)信息可视化处理的是抽象数据结构,如树状结构或图形;
3)可视化分析论尤其关注的是意会和推理。
发展历史
自十八世纪后期数据图形学诞生以来,抽象信息的视觉表达手段一直被人们用来揭示数据及其他隐匿模式的奥秘。二十世纪90年代期间新近问世的图形化界面,则使得人们能够直接与可视化的信息之间进行交互,从而造就和带动了十多年来的信息可视化研究。信息可视化试图通过利用人类的视觉能力,来搞清抽象信息的意思,从而加强人类的认知活动。籍此,具有固定知觉能力的人类就能驾驭日益增多的数据。
1967年,一位法国制图工作者J.Bertin发表了他们的图形理论。这一理论指明了图表的基本元素,描述了图表的设计框架。
1983年美国耶鲁大学统计学教授E.R.TuRe发表了数据图理论。Bertin与TuRe的理论在许多领域是著名的和有影响的,这引起了信息可视化的大发展。在信息可视化的发展过程中,科学可视化的产生与发展起了决定性的推动作用。
1989年由斯图尔特·卡德(Stuart K.Card)、约克·麦金利(Jock D.Mackinlay)和乔治·罗伯逊(George G.Robertson)创造出信息可视化的英文术语"Information Visualization"。据斯图尔特·卡德1999年的报告称,二十世纪90年代以来才兴起的信息可视化领域,实际上源自其他几个领域。
2003年,本·什内德曼指出,该领域已经由研究领域之中从稍微不同的方向上崭露出头角。同时,他还提到了图形学、视觉设计、计算机科学以及人机交互,以及新近出现的心理学和商业方法。
信息可视化已成为一个与科学可视化并列的研究领域。
相关应用
信息可视化日益成为不同领域方向的关键要素:
科学技术研究工作;
数字图书馆;
数据挖掘;
财务数据分析和市场研究;
生产制造过程的控制;
犯罪地图;
导视设计-地铁线路;
增强现实信息引导;
新媒体图表;
数据新闻;
多媒体展览;
交互设计;
信息网站;
说明指导手册;
人工智能信息图形化;