冰晶
冰晶 |
中文名:冰晶 本質:固態水合物 |
冰晶(英語:ice crystal)是冰的宏觀晶體形式。冰晶在光學及電學等物理性質方面有各向異性,並且具有較高的介電常數。[1]冰晶常呈六角柱狀、六角板狀、枝狀、針狀等形狀,由於大氣中的冰晶一般由水蒸氣凝華產生,因此具有非常對稱的外型。在不同的環境溫度和濕度中,可以產生不同的對稱外形。當環境因素改變時,冰晶的形成方式也可能會改變,因此最終形成的晶體可能是多種樣式混合而成的,例如冠柱晶。空中的冰晶下落時傾向以其側棱平行於地平線,因此能以增強的差動反射率在偏振天氣雷達信號(polarimetric weather radar)中被發現。[注 1]冰晶帶電後,下落的方向便不再平行於地平線。帶電的冰晶也很較容易被偏振天氣雷達檢測出來。
目錄
結構
宏觀的冰是多晶的,[2]所以在研究冰的晶體結構時使用的往往是單晶的冰晶。1916年末,人們開始利用X射線衍射法對冰晶的結構進行一系列的探究。[3]研究中獲得的照片有12條清晰的衍射線,分析其位置可以得知冰晶屬於六方晶系晶體。如左側的冰晶結構示意圖一所示,冰晶晶胞呈四稜柱形,的底面邊長為4.52Å,高為7.34Å。[4]冰晶分子排列的方式與金屬鎂晶體屬同一晶系,但是通過X射線衍射法可以得知冰晶與金屬鎂在結構上還是有很大差別的。下表是大衛·馬蒂亞斯·丹尼森(David Mathias Dennison,美國物理學家,後來計算出質子服從費米–狄拉克統計,擁有½自旋[5])於1921年對冰晶進行X射線衍射實驗獲得的結果:
相鄰線之間的偏角 (度數) |
線的強度 (估算值) |
用作對比的鎂線[7] | 晶面間距 | 晶面取向 | 基面的數量 | |
---|---|---|---|---|---|---|
觀測值 | 理論值 | |||||
10.44 | 1 | 4.7 | 3.92 | 3.915 | 1010 | 3 |
11.16 | 10 | - | 3.67 | 3.671 | 0001 | 1 |
11.88 | 2 | 10.0 | 3.44 | 3.453 | 1011 | 6 |
15.30 | 1.5 | 3.3 | 2.68 | 2.675 | 1012 | 6 |
18.12 | 1 | 4.7 | 2.26 | 2.260 | 1120 | 3 |
19.86 | 5 | 4.0 | 2.065 | 2.065 | 1013 | 6 |
21.38 | 1 | 4.0 | 1.92 | 1.925 | 1122 | 6 |
27.16 | 1.5 | 1.0 | 1.516 | 1.528 | 2023 | 6 |
30.20 | 2 | 1.3 | 1.368 | 1.372 | 1015 | 6 |
1.368 | 1.372 | 1232 | 12 | |||
31.76 | 0.25 | 0.2 | 1.30 | 1.305 | 1010 | 3 |
33.08 | 0.25 | 1.0 | 1.25 | 1.268 | 1233 | 12 |
35.54 | 0.5 | 0.3 | 1.167 | 1.165 | 2025 | 6 |
應用
降雪
極小的冰晶和0℃以下的過冷卻水滴組成雲層,水氣不斷升騰與冰晶凝華,水溫達-5℃時,無數根六角形的冰針就形成了。這是冰晶最穩定的形狀。同時,凝華作用還在繼續進行。如果冰晶周圍水氣多,6個角增長很快,就形成星狀;假如冰晶四周水氣很少,6角不如兩個底面增長快,便形成柱狀;倘若水氣適中,則形成片狀雪花。如果地面氣溫較高,雪降落過程中邊融化邊碰撞合併為水滴,最終成為降雨。
製冷設備
該產品外殼採用高強度耐低落溫材料,內盛蓄冷液(白色稠液體)而成(冰點-12℃,即零下12度結冰,冰點比水的冰點低,故儲存的冷量和溶解時釋放出的冷量都遠遠大於水,直接起到增強降溫製冷之用,具有儲冷足、降溫快、釋冷慢等特點。),採用橡膠塞加鋁蓋密封不會泄漏,無毒,符合衛生標準,儲冷量大,廣泛適用於各種冰箱、冷櫃、魚箱作、醫藥儲冷保冷;如今被廣泛用於空調扇增強降溫製冷之用(先將冰晶放進冰箱冷凍5到6小時結冰後,再放入空調扇水箱內降溫,循環使用,永不失效)。成分是冷媒: (——以下是是把載冷劑和製冷劑統稱冷媒) 冷凍空調系統中,用以傳遞熱能,產生冷凍效果之工作流體。依工作方式分類可分為一次(Primary)冷媒與二次(Secondary)冷媒。依物質屬性分類可分為自然(Natural)冷媒與合成(Synthetic)冷媒。 理想冷媒:無毒、不爆炸、對金屬及非金屬無腐蝕作用、不燃燒、泄漏時易於察覺、化學性安定、對潤滑油無破壞性、具有較的蒸發潛熱、對環境無害 。
形成
冰晶的形成發生在雲層中、雲層下和地表層,並由多個物理過程組成。在冰晶的形成過程中,冰核是必不可少的(其中大氣中懸浮的塵埃顆粒占了70%),在冰核上過冷水滴凝固生長成冰晶。要形成冰晶首先要活化冰核,也就是使冰核能形成冰晶,不同冰核活化的溫度不同。[注 2]溫度下降後,活化的冰核數量增加。冰核活化後,由於伯傑龍效應(Bergeron effect),大氣中的過冷的水蒸氣會在冰核上凝華使冰核增長形成冰晶。以上的過程與大氣中的溫度和濕度有密切聯繫,在不同環境中形成的冰晶形狀是有差異的。[注 3]在冰晶下降過程中會經過各種不同的溫度和濕度的環境,因此最終形成的形狀往往是各種基本形狀的結合體。冰晶的大小與其在雲層中停留的時間、溫度和氣壓還有冰的過飽和程度有關。[8]
融化與破裂
冰晶受熱後轉化為液態水的過程一般稱為「融化」。大氣中冰晶雪花的融化率決定了地表面上的降水類型。在下降過程中,冰晶經過0℃等溫線時開始融化,大多數的冰晶在未融化時帶有正電荷而融化時帶電符號改變。
通過在處於不同融化階段的冰晶置於-78.5℃的乙烷中凍結可以得知:冰晶融化的方式主要取決於晶體的初始類型,並可概括出兩種基本方式:[9]
- 柱狀冰晶的融化:通常簡單柱狀冰晶開始時表面上的融化一致的,隨後逐漸形成不同厚度的水層,在柱狀晶的中心形成一個或兩個明顯的氣泡,再進一步融化時,產生的水會形成一個清晰的水滴,附着在水滴上的柱狀晶體快速進入水滴中,最終形成一個球形滴。柱狀冰晶融化水有收縮成一個或多個水滴的趨勢,且趨向於收縮至最小表面積;
- 板狀冰晶的融化:板狀冰晶融化時,融化水形成覆蓋於板上的光滑圓面。而板狀冰晶則沒有縮成單個水滴的趨勢,而是從板狀冰晶融化的水層形成雙凸鏡帶冰狀,限定冰晶的周邊。
中國氣象學家龔乃虎於1982年在美國猶他大學做「為延長冰晶生長的微物理風洞實驗」時獲得了冰晶與溫度、形狀、大小、生長時間、下降速度及融化後質量的資料,並總結出冰晶在不同溫度下融化的規律。[注 4]在該實驗中獲得的數據見下表:
溫度(℃) | 生長時間 | 尺寸(mm) | 含水量 (LWC) |
質量(μg) | 下落速度 (cm/s) |
融化前後滴數 | 備註 | |
---|---|---|---|---|---|---|---|---|
2a | c | |||||||
-4.2 | 13 | 0.15 | 0.13 | 0.5 | 0.5 | 1:1 | 六角板 | |
-4.5 | 19 | 0.1 | 0.7 | 0.5 | 2.15 | 1:3 | 鞘凇 | |
-4.9 | 10 | 0.08 | 0.44 | 0.5 | 1.1 | 1:3 | 鞘狀 | |
-5.0 | 13 | 0.05 | 1.2 | 0.5 | 2.3 | 2:14 | 雙針狀 | |
-5.1 | 19 | 0.22 | 0.42 | 0.5 | 1.15 | 36 | 3:4 | 三疊合針狀 |
-6.2 | 19 | 0.50 | 0.48 | 0.5 | 8.18 | 54 | 2:1 | 雙柱凇晶 |
-8.5 | 13 | 0.22 | 0.2 | 0.5 | 1.8 | 1:1 | 凇晶 | |
-8.9 | 19 | 0.25 | 0.2 | 0.5 | 4.2 | 1:1 | 凇晶 | |
-10.6 | 25 | 1.25 | 0.95 | 0.8 | 49 | 等距+凇晶 | ||
-11.4 | 19 | 0.45 | 0.54 | 0.8 | 8.18 | 1:2 | 六角凇晶 | |
-12.3 | 19 | 0.9 | 0.5 | 0.8 | 11.5 | 1:1 | 六角扇凇晶 | |
-14.7 | 10 | 1.7 | - | 0.8 | 8.62 | 1:18 | 分枝六角星 |
大氣現象
冰晶是多種大氣現象的成因,這些大氣現象主要包括雲、降水及冰暈。氣溫達-5℃時高空中便會形成六角形的冰針。同時,韋格納–伯傑龍–芬德森過程(Wegener–Bergeron–Findeisen process)繼續進行,過冷水蒸發產生的蒸氣在冰晶上凝華。若冰晶周圍水氣多,則垂直於光軸的六個角增長較快,就形成板狀冰晶;若冰晶周圍較乾燥,則平行於光軸的兩個底面增長較快,便形成柱狀冰晶;若水氣適中,則形成片狀雪花,上述三者都以降雪的形式落向地面。但如果地面氣溫較高,雪降落過程中冰晶會發生融化,並相互碰撞合併為雨滴,成為降雨。
注釋
- ↑ 王致君、楚榮忠. 偏振天氣雷達在氣象中的應用簡介 (PDF). 乾旱氣象. 2004年6月, 22 (2): 62–68 (中文(簡體)).
由於雲內許多水成物粒子都不是理想的球體,而且粒子的軸在空間分布上存在優勢取向,所以可用偏振技術對其進行研究,這就是偏振氣象雷達發展的理論基礎。
[失效連結] - ↑ 不同冰核及其活化溫度:菱鎂礦(-8℃)、高嶺石(-9℃)、赤鐵礦(-10℃)、馬錢子鹼(-11℃)、火山灰(-13℃)、黑雲母(-14℃)、蛭石(-15℃)。
- ↑ 一般冰晶的形態與形成溫度間的關係如下:板狀或片狀(0℃至-3℃、-9℃至-12℃、-18℃至-22℃)、針狀(-3℃至-5℃)、柱狀(-5℃至-9℃、-22℃以下)、星狀(-12℃至-18℃)。
- ↑ 由龔乃虎等總結的冰晶在不同溫度下融化的規律:
參考文獻
- ↑ Todd S. Glickman. Glossary of meteorology 2. American Meteorological Society. Jan 1, 2000. ISBN 978-1878220349. (原始內容存檔於2008-03-16) (英語).
- ↑ Philip Ball. H2O: a biography of water. Phoenix. Oct 2000. ISBN 978-0-753-81092-7 (英語).
- ↑ Ancel St. John. The Crystal Structure of Ice (PDF). Proc Natl Acad Sci USA. Jul 1918, 4 (7): 193–197. PMC 1091441. PMID 16576297 (英語).
- ↑ Sir W H Bragg. The Crystal Structure of Ice (PDF). Proc. Phys. Soc. London. 1921, 34 (98): 193–197. doi:10.1088/1478-7814/34/1/322 (英語).
- ↑ D. M. Dennison. A Note on the Specific Heat of the Hydrogen Molecule (PDF). Roy. Soc. Proc., A. Jul 1, 1927, 115 (711): 483–486. doi:10.1098/rspa.1927.0105. Communicated by R. H. Fowler(英文)
- ↑ D. M. Dennison. The Crystal Structure of Ice. Physical Review. 1921, 17 (1): 20–22. doi:10.1103/PhysRev.17.20 (英語).
- ↑ 這組數據由大衛·馬蒂亞斯·丹尼森摘自阿爾伯特·華萊士·赫爾(Albert Wallace Hull)對金屬鎂晶體研究的論文:A. W. Hull. The Crystal Structure of Magnesium (PDF). Proc Natl Acad Sci USA. Jul 1917, 3 (7): 470–473. PMC 1091290. PMID 16576242 (英語).
- ↑ Ivan Dubé. From mm to cm... Study of snow/liquid water ratios in Quebec (PDF). Unpublished Manuscript. Dec 2003: 14–16 (英語).
- ↑ Knight, Charles A. Observations of the Morphology of Melting Snow. Journal of Atmospheric Sciences. 1979, 36 (6): 1123–1132. doi:10.1175/1520-0469(1979)036<1123:OOTMOM>2.0.CO;2 (英語).
- ↑ 龔乃虎. 關於冰晶雪花融化問題的研究——進展與展望. 高原氣象. 1999年8月, 18 (3): 368–376 (中文(簡體)).