反射望遠鏡
反射望遠鏡是使用曲面和平面的面鏡組合來反射光線,並形成影像的光學望遠鏡,而不是使用透鏡折射或彎曲光線形成圖像的屈光鏡。
目錄
簡介
反射式望遠鏡所用物鏡為凹面鏡,有球面和非球面之分;比較常見的反射式望遠鏡的光學系統有牛頓式反射望遠鏡與卡塞格林式反射望遠鏡。反射式望遠鏡的性能很大程度上取決於所使用的物鏡。通常使用的球面物鏡具有容易加工的特點,但是如果所設計的望遠鏡焦比比較小,則會出現比較嚴重的光學球面像差;這時,由於平行光線不能精確的聚焦於一點,所以物像將會變得模糊。因而大口徑,強光力的反射式望遠鏡的物鏡通常採用非球面設計,最常的非球面物鏡是拋物面物鏡。由於拋物面的幾何特性,平行於物鏡光軸的光線將被精確的匯聚在焦點上,因而能大大改善像質。但即使是拋物面物鏡的望遠鏡仍然會存在軸外像差。
在佛蘭克林學院使用的24英吋可轉換牛頓/卡塞格林反射望遠鏡。
基本認識
用反射鏡作物鏡的望遠鏡。反射望遠鏡光學性能的重要特點是沒有色差。其他像差在理論上雖然可以得到消除,但工藝複雜,實用的反射望遠鏡為了避免像差,視場一般比較小,可以通過像場改正透鏡擴大視場。反射鏡的材料要求膨脹係數小,應力較小和便於磨製。鏡面通常鍍鋁,在紅外區及紫外區都能得到 較好的反射率。反射望遠鏡的鏡筒一般比較短,便於支撐。現代高科技反射望遠鏡還具有鏡面自適應光學系統和主動光學系統,可以補償大氣擾動干擾和鏡面應力及風力引起的變形抖動。
中國目前最大的光學望遠鏡是2.16米。目前世界上最大的望遠鏡是位於夏威夷的凱克望遠鏡,直徑10米,由36面1.8米的六角型鏡面拼合而成,耗資一億三千萬美元,主要是由美國的一個企業家凱克捐助修建的,第一面凱克望遠鏡建造成功後,凱克基金會又投資修建了凱克二號望遠鏡,兩座挨在一起,威力無比;另外的大型望遠鏡有美國國立天文台位於南北兩半球的兩個八米望遠鏡,一座位於夏威夷,一座位於智利,合稱雙子座望遠鏡;日本人在夏威夷建造了一座八米的稱為昴星團望遠鏡;下世紀歐洲南方天文台將建成四座八米望遠鏡,組合口徑相當於15米。
技術考量
一個彎曲的主鏡是反射望遠鏡基本的光學元件,並且在焦平面上造成影像。從面鏡到焦平面的距離稱為焦長(焦距),底片或數位感應器可以在此處記錄影像,或是安置目鏡以便眼睛能觀看。反射鏡雖然能夠消除色差,但是仍然有其他的像差:
- 當使用非拋物面鏡時會有球面像差(成像不在平面上)。
- 彗形像差
- 畸變(視野)
- 在反射器的設計和修正上會使用折反射器來消除其中的一些像差。
- 幾乎所有用於研究的大型天文望遠鏡都是反射鏡,有下列的原因:
- 在採用透鏡之下,必須整塊鏡片材料皆為沒有缺點和均勻而沒有多相性,而反射鏡只需要將一個表面完美的磨光,磨製相對簡易。
- 不同顏色的光在穿透介質時會有不同的播速度。對未做修正的透鏡,這會造成折射鏡特有的色差。製作大的消色差透鏡所費不貸,面鏡則完全沒有這個問題。
- 反射鏡可以在更廣闊的範圍內研究光譜,但有些波長在穿過折射鏡或折反射鏡的透鏡時會被吸收掉。
- 大口徑透鏡在製造和操作上都有技術上的困難。其一是所有的材料都會因為重力而下垂,觀測舉得最高而且也是相對較重的透鏡只能在鏡片周圍加以支撐,另一方面,面鏡除了反射面以外,可以在反射面的背面和其他的側邊進行支撐。
當業餘天文學還在使用牛頓焦點的設計時,專業天文學已經傾向於使用主焦點、卡塞焦點和庫德焦點的設計。在2001年,至少已經有49架口徑2米或更大的反射望遠鏡採用主焦點的設計。
基本分類
反射望遠鏡由於工作焦點的不同分為主焦點系統、牛頓系統、卡塞格林系統、格里高里系統、 折軸系統等,通過鏡面的變換,在同一個望遠鏡上可以分別獲得主焦點系統( 或牛頓系統)、卡塞格林系統和折軸系統。這些系統的焦點,分別稱為主焦點、牛頓焦點、卡塞格林焦點、格里高里焦點和折軸焦點等。單獨用上述一個系統作望遠鏡時,分別稱為牛頓望遠鏡、卡塞格林望遠鏡、格里高里望遠鏡、折軸望遠鏡。 大型光學反射望遠鏡主要用於天體物理研究,特別是暗弱天體的分光、測光以及照相工作。
牛頓式望遠鏡
這種望遠鏡通常利用一個凹的拋物面反射鏡將進入鏡頭的光線匯聚後反射到位於鏡筒前端的一個平面鏡上,然後再由這個平面鏡將光線反射到鏡筒外的目鏡里,這樣我們便可以觀測到星空的影像。
優點
由於反射鏡的造價要比透鏡低的多,因此對於大口徑的望遠鏡來說,經常做成反射式的,而不是笨重的折射式。便攜式設計的反射望遠鏡,雖然鏡筒只有500mm,但焦距卻可以達到1000mm。牛頓式反射鏡的焦比可以達到f/4到f/8,非常適合觀測那些暗弱的河外星系、星雲。有些時候用這種望遠鏡觀測月亮和行星也是很適合的。如果要進行拍照,使用牛頓式望遠鏡時非常好的。但是使用起來要比折反式望遠鏡要麻煩一點。牛頓式結構可以很好的會聚光線,在焦點處得到一個非常明亮的像。牛頓式反射式望遠鏡結構相對簡單,造價低性能優越製作容易的特點,成為業餘愛好者自製的首選。
缺點
開放的鏡筒式的空氣可以流通,這樣不僅會影響到成像的穩定度,而且一些塵埃會隨着流動的空氣進入鏡筒並附着在物鏡上,長此以往會破壞物鏡表面的鍍膜,使其反射力下降。由於這種結構的物鏡比較容易破裂,所以使用的時候需要倍加小心。對於偏軸的光線,牛頓式望遠鏡會產生彗差。這種結構的望遠鏡不適合於對地面景觀的觀測。通常牛頓式望遠鏡的口徑和體積都比較大,因此價格也比較昂貴。由於加了一個二級平面反射鏡,所以會損失一些光線。
卡塞格林望遠鏡
卡塞格林望遠鏡是由兩塊反射鏡組成的一種反射望遠鏡,1672年為卡塞格林所發明。反射鏡中大的稱為主鏡,小的稱為副鏡。通常在主鏡中央開孔,成像於主鏡後面,它的焦點稱為卡塞格林焦點。有時也按圖中虛線那樣多加入一塊斜平面鏡,成像於側面,這種卡塞格林望遠鏡,又稱為耐司姆斯望遠鏡。
折軸望遠鏡
折軸望遠鏡是光線通過光學元件沿軸射出的望遠鏡。這種望遠鏡的焦點稱為折軸焦點。各種裝置型式(赤道式﹑地平式等)的折射望遠鏡﹑反射望遠鏡﹑折反射望遠鏡都可以配置成折軸望遠鏡。
優缺點
反射式望遠鏡有許多優點,比如:沒有色差,能在廣泛的可見光範圍內記錄天體發出的信息,且相對於折射望遠鏡比較容易製作。但由於它也存在固有的不足:如口徑越大,視場越小,物鏡需要定期鍍膜等。
對於反射鏡的材料,只要求它的膨脹係數較小、應力較小和便於磨製。磨製好的反射鏡表面通常鍍有一層鋁膜,它對紅外區和紫外區都有較好的反射律,適於在較寬的波段範圍研究天體的光譜和光度。另外,反射望遠鏡的鏡筒一般較短。大型的反射望遠鏡主要用於天體物理的研究工作,特別是暗弱天體的分光、測光和直接照相等。
反射式望遠鏡的性能很大程度上取決於所使用的物鏡。通常使用的球面物鏡具有容易加工的特點,但是如果所設計的望遠鏡焦比比較小,則會出現比較嚴重的光學球差;這時,由於平行光線不能精確的聚焦於一點,所以物象將會變得模糊。因而大口徑,強光力的反射式望遠鏡的物鏡通常採用非球面設計,最常見的非球面物鏡是拋物面物鏡。由於拋物面的幾何特性,平行於物鏡光軸的光線將被精確的匯聚在焦點上,因而能大大改善像質。但即使是拋物面物鏡的望遠鏡仍然會存在軸外像差。
應用
反射望遠鏡在天文觀測中的應用已十分廣泛,由於鏡面材料在光學性能上沒有特殊的要求,且沒有色差問題,因此,它與折射系統相比,可以使用大口徑材料,也可以使用多鏡面拼鑲技術等;磨好的反射鏡一般在表面鍍一層鋁膜,鋁膜在2000-9000埃波段範圍的反射率都大於80%,因而除光學波段外,反射望遠鏡還適於對近紅外和近紫外波段進行研究;因此較適合於進行恆星物理方面的工作(恆星的測光與分光),目前設計和建造的大口徑望遠鏡都是採用的反射系統,遺憾的是反射望遠鏡的反射鏡面需要定期鍍膜,故它在科普望遠鏡中的應用受到了限制。
發展史
詹姆斯·格雷果里
詹姆斯·格雷戈里在1663年提出一種方案:利用一面主鏡,一面副鏡,它們均為凹面鏡,副鏡置於主鏡的焦點之外,並在主鏡的中央留有小孔,使光線經主鏡和副鏡兩次反射後從小孔中射出,到達目鏡。這種設計的目的是要同時消除球差和色差,這就需要一個拋物面的主鏡和一個橢球面的副鏡,這在理論上是正確的,但當時的製造水平卻無法達到這種要求,所以格雷戈里無法得到對他有用的鏡子。 [1]
卡塞格林
1672年法國人]N·卡塞格林提出新的反望鏡遠鏡設計方案。他對格里式望遠鏡進行改進,主鏡仍是中心有孔的凹拋物面鏡,只是把副鏡磨製成凸雙曲面鏡。當來自天體平行主軸的光線,投射到主鏡上,再經過主鏡反射,在鏡前聚焦,在光束尚未完全匯聚時,又受到在主焦點前的副鏡再一次反射,使光線發散,然後穿過主鏡中心孔後再聚焦,此焦點又稱卡塞格林焦點。同樣在此焦點處用目鏡觀看,則可看到再放大的像。這種反射望遠鏡稱為卡塞格林望遠鏡,簡稱卡式望遠鏡。卡式望遠鏡焦距長而鏡筒短,得到倍率大、星像大的好效果。拍攝天體也可得到大而清晰的像。若將卡式的副鏡換成平面鏡,安放在與光軸成 45°角的位置,這樣可改成牛頓式望遠鏡,在側面成像。因為這種望遠鏡有兩種光路成像系統,所以又稱為耐司姆斯望遠鏡。
羅斯伯爵
19世紀中葉,製作反射望遠鏡口徑最大的是英國天文學家羅斯伯爵,他出身貴族喜好天文,在1842年他開始籌措製造口徑184厘米的大反射望遠鏡,歷經三年的磨製,從四次失敗目前在天文觀測中,反射望遠鏡已成為現代天文觀測的常用工具。世界上已建造口徑在2米以上的反射望遠鏡有15台之多,超過5米口徑以上的反射望遠鏡,已有三台。最著名的是安裝在美國帕洛馬山的天文台內的508厘米反射望遠鏡。製造這架望遠鏡,曾經歷了許多風風雨雨。
海爾
1928年美國天文學家海爾已近晚年,當時洛杉磯城市已很繁榮,城市燈光很亮,離此城不遠的威爾遜山天文台受到干擾,為避免城市燈光干擾,並且提高觀測能力,海爾決定在距離威爾遜東南145千米的帕洛馬山上,建造了一個508厘米的大反射望遠鏡。他首先經過嚴格挑選光學玻璃,磨製前在玻璃背面鑽100多個孔洞,使鏡後成為蜂窩狀,中心鑽孔為1.1米。經過漫長的時間磨製,總共磨掉4500千克的玻璃,研磨過程中,消耗掉了28噸金剛砂,最後鏡重為 1.45噸,直到1948年才建成。可惜的是1938年海爾與世長辭了,沒能看到這架大望遠鏡的建成,為紀念他的卓越貢獻,將此架望遠鏡命名為「海爾望遠鏡」。這是全世界望遠鏡的佼佼者。這架望遠鏡的建成,為天文學的發展起到了推波助瀾的作用。它能探測到宇宙中遠達12億光年的暗弱天體,探測人們所不知道的恆星和星系的秘密,極大地開擴了人類的眼界,擴大了人類認識宇宙的範圍,取得的一系列新成果,使天文學向前邁進了一大步。
現在
隨着科學技術水平的不斷提高,人們在製作大口徑反射望遠鏡方面也不斷有所提高。前蘇聯科學院磨製的口徑6米的反射望遠鏡,1976年安裝在俄羅斯高加索山上澤連丘克斯卡亞。進入90年代美國又在夏威夷英納克亞建成了10米口徑大型反射望遠鏡。我國口徑最大的2.16米反射望遠鏡是1988年在北京天文台河北興隆觀測站落成的。這個觀測站地處長城北側、海拔960米的燕山主峰南麓,這也是一個天體物理光學觀測的基地。
牛頓
折射望遠鏡產生的像差,主要是因為光線通過透鏡以後再聚焦而產生的,那麼能不能不通過透鏡折射後聚焦而通過鏡面的反射而聚焦成像呢?為此英國的物理學家、天文學家牛頓首先提出用一定形狀的反射鏡,也可以把平行光線會聚在一起而聚焦成像。
1668年牛頓親自動手磨製了一塊凹球面鏡。鏡子材料選用合金(銅、錫、砷),顏色為白色,鏡面直徑為2.5厘米,鏡筒為15厘米長的金屬筒,在鏡筒末端安裝了物鏡。當來自天體的平行光束,投射到物鏡上,經過反射後會聚到焦點處,然後可以看到天體的像。此焦點又稱主焦點,在主焦點前安放一個小平面鏡,使它與主軸光線之間夾角為45°。把光線轉向90°,然後在鏡筒一側聚焦成像,此焦點稱為牛頓焦點。在牛頓焦點後安放目鏡便可以進行觀測了,這是牛頓製作的第一架反射望遠鏡。這種望遠鏡外形上短粗矮胖,產生的物像可以被放大40倍。
牛頓製造第一架反射望遠鏡雖然不想公開宣傳,但引起了人們的關注。後來牛頓又製作了第二架反射望遠鏡,物鏡口徑為5厘米。他於1672年1月11日送給皇家學會,目前這架反射望遠鏡,仍在英國得以很好地保存。
反射望遠鏡細分起來,又有許多種類,最常見的就是牛頓式反射望遠鏡。它是由英國物理學家牛頓在1671年發明的。它的物鏡是一片凹面鏡,而不是凸透鏡,它裝在望遠鏡筒的後邊,而不是前邊。它的表面鍍銀,可以把光線匯聚到前邊,在焦點處固定有一面鏡子,這個鏡子把物鏡的圖像掉轉90度,射在望遠鏡的筒壁上,在筒壁上,設置有一個目鏡,嚴格說來,它是一個目鏡組,是由好幾個鏡片組成的,相當於一個目鏡,這樣可以提高圖像質量。用這種望遠鏡觀測天體的時候,觀測者不是在望遠鏡的後邊,而是在望遠鏡的側面。由於它的反射平面鏡固定起來很複雜,所以它的鏡筒也並不是標準的圓形,而是中部有段鼓起,就像葫蘆一樣,所以又叫寶葫蘆望遠鏡。[2]
視頻