大數據技術概論
《大數據技術概論》,婁岩 徐東雨 著,出版社: 清華大學出版社。
清華大學出版社成立於1980年6月,是教育部主管、清華大學主辦的綜合性大學出版社[1]。清華社先後榮獲 「先進高校出版社」「全國優秀出版社」「全國百佳圖書出版單位」「中國版權最具影響力企業」「首屆全國教材建設獎全國教材建設先進集體」等榮譽[2]。
目錄
內容簡介
本書從初學者易於理解的角度,以通俗易懂的語言、豐富的實例、簡潔的圖表、傳統和現代數據征的對比,將大數據這一計算機前沿科學如數家珍地娓娓道來。既介紹了大數據和相關的基礎知識,又與具體應用有機結合起來,並藉助可視化圖表的畫面感立體地為讀者剖析了大數據的技術和原理,非常便於自學。 本書內容包括大數據概論、大數據採集及預處理、大數據分析、大數據可視化、Hadoop概論、HDFS和Common概論、MapReduce概論、NoSQL技術介紹、Spark概論、雲計算與大數據、大數據相關案例等內容。 本書既可以作為想了解大數據技術和應用的初學者的教材,也適合作為培訓中心、IT人員、企業策劃和管理人員的參考書。
目錄
第1章大數據概論
1.1大數據技術概述
1.1.1大數據的基本概念
1.1.2IT產業的發展簡史
1.1.3大數據的來源
1.1.4大數據產生的三個發展階段
1.1.5大數據的點
1.1.6大數據處理流程
1.1.7大數據的數據格式性
1.1.8大數據的征
1.1.9大數據的應用領域
1.2大數據技術架構
1.3大數據的整體技術和關鍵技術
1.4大數據分析的五種典型工具簡介
1.5大數據未來發展趨勢
1.5.1數據資源化
1.5.2數據科學和數據聯盟的成立
1.5.3大數據隱私和安全問題
1.5.4開源軟件成為推動大數據發展的動力
1.5.5大數據在多方位改善我們的生活
本章小結
第2章大數據採集及預處理
2.1大數據採集
2.1.1大數據採集概述
2.1.2大數據採集的數據來源
2.1.3大數據採集的技術方法
2.2大數據的預處理
2.3大數據採集及預處理的工具
本章小結
第3章大數據分析概述
3.1大數據分析簡介
3.1.1什麼是大數據分析
3.1.2大數據分析的基本方法
3.1.3大數據處理流程
3.2大數據分析的主要技術
3.2.1深度學習
3.2.2知識計算
3.2.3可視化
3.3大數據分析處理系統簡介
3.3.1批量數據及處理系統
3.3.2流式數據及處理系統
3.3.3交互式數據及處理系統
3.3.4圖數據及處理系統
3.4大數據分析的應用
本章小結
第4章大數據可視化
4.1大數據可視化概述
4.1.1大數據可視化與數據可視化
4.1.2大數據可視化的過程
4.2大數據可視化工具
4.2.1常見大數據可視化工具簡介
4.2.2Tableau數據可視化入門
本章小結
第5章Hadoop概論
5.1Hadoop簡介
5.1.1Hadoop的發展簡史
5.1.2Hadoop應用現狀和發展趨勢
5.2Hadoop的架構與組成
5.2.1Hadoop架構
5.2.2Hadoop組成模塊介紹
5.3Hadoop的應用
5.3.1Hadoop平台搭建
5.3.2Hadoop的開發方式
5.3.3Hadoop應用分析
本章小結
第6章HDFS和Common概論
6.1HDFS概述
6.1.1HDFS相關概念
6.1.2HDFS點
6.1.3HDFS體系結構
6.1.4HDFS工作原理
6.1.5HDFS相關技術
6.1.6HDFS源代碼結構
6.1.7HDFS接口
6.2Common概述
本章小結
第7章MapReduce概論
7.1MapReduce簡介
7.1.1如何理解MapReduce
7.1.2MapReduce功能和技術征
7.2MapReduce的Map和Reduce任務
7.2.1Map與Reduce
7.2.2Map任務原理
7.2.3Reduce任務原理
7.3MapReduce架構和工作流程
7.3.1MapReduce的架構
7.3.2MapReduce工作流程
7.4MapReduce編程源碼範例
7.5MapReduce接口
本章小結
第8章NoSQL技術介紹
8.1NoSQL基礎知識
8.1.1NoSQL的產生
8.1.2NoSQL的點
8.1.3NoSQL的技術基礎
8.2NoSQL的種類
8.2.1鍵值存儲
8.2.2列存儲
8.2.3面向文檔存儲
8.2.4圖形存儲
8.3典型的NoSQL工具
8.3.1Redis
8.3.2Bigtable
8.3.3CouchDB
8.3.4Neo4j
本章小結
第9章Spark概論
9.1Spark概述
9.1.1Spark簡介
9.1.2Spark發展
9.1.3Scala語言
9.2Spark與Hadoop
9.2.1Hadoop的局限與不足
9.2.2Spark的優點
9.2.3Spark速度比Hadoop快的原因分解
9.3Spark大數據處理架構及其生態系統
9.3.1底層的Cluster Manager和Data Manager
9.3.2中間層的Spark Runtime
9.3.3高層的應用模塊
9.4Spark的應用
9.4.1Spark的應用場景
9.4.2應用Spark的成功案例
本章小結
第10章雲計算與大數據
10.1雲計算概論
10.1.1雲計算定義
10.1.2雲計算與大數據的關係
10.1.3雲計算基本徵
10.1.4雲計算服務模式
10.2雲計算核心技術
10.2.1虛擬化技術
10.2.2虛擬化軟件及應用
10.2.3資源池化技術
10.2.4雲計算部署模式
10.3雲計算仿真
10.4雲計算的安全
10.4.1雲計算安全現狀
10.4.2雲計算安全服務體系
10.5雲計算應用案例
本章小結
第11章大數據解決方案及相關案例
11.1大數據解決方案基礎
11.2Intel大數據
11.2.1Intel大數據解決方案
11.2.2Intel大數據相關案例——中國移動廣東公司詳單、賬單
查詢系統
11.3百度大數據
11.3.1百度大數據引擎
11.3.2百度大數據 平台
11.3.3相關應用
11.3.4百度預測的使用方法
11.4騰訊大數據
11.4.1騰訊大數據解決方案
11.4.2相關實例——廣點通
本章小結
參考文獻
參考文獻
- ↑ 我國出版社的等級劃分和分類標準,知網出書,2021-03-01
- ↑ 企業簡介,清華大學出版社有限公司