宇宙微波背景
宇宙微波背景(英語:Cosmic Microwave Background,簡稱CMB,又稱3K背景輻射)是宇宙學中「大爆炸」遺留下來的熱輻射。
在早期的文獻中,「宇宙微波背景」稱為「宇宙微波背景輻射」(CMBR)或「遺留輻射」,是一種充滿整個宇宙的電磁輻射。特徵和絕對溫標2.725K的黑體輻射相同。頻率屬於微波範圍。宇宙微波背景是宇宙背景輻射之一,為觀測宇宙學的基礎,因其為宇宙中最古老的光[1],可追溯至再複合時期。
目錄
發現
利用傳統的光學望遠鏡,恆星和星系之間的空間(背景)是一片漆黑。然而,利用靈敏的輻射望遠鏡可發現微弱的背景輝光,且在各個方向上幾乎一模一樣,與任何恆星,星系或其他對象都毫無關係。這種光的電磁波譜在微波區域最強。1964年美國射電天文學家阿諾·彭齊亞斯和羅伯特·威爾遜偶然發現宇宙微波背景,這一發現是基于于1940年代開始的研究,並於1978年獲得諾貝爾獎[2]。
“ | 宇宙微波背景是我們宇宙中最古老的光,當宇宙剛剛38萬歲時刻在天空上。它顯示出微小的溫度漲落,對應着局部密度的細微差異,代表着所有未來的結構,是當今的恆星與星系的種子 | ” |
形成
宇宙在年輕時期,恆星和行星尚未形成之前,含有緻密,高溫,充滿着白熱化的氫氣雲霧等離子體。等離子體與輻射充滿着整個宇宙,隨着宇宙的膨脹而逐漸冷卻。當宇宙冷卻到某個溫度時,質子和電子結合形成中性原子。這些原子不再吸收熱輻射,因此宇宙逐漸明朗,不再是不透明的雲霧。宇宙學家提出中性原子在「再複合」時期形成,緊接在「光子脫耦」之後,即光子開始自由穿越整個空間,而非在電子與質子所組成的等離子體中緊密的碰撞。光子在脫耦之後開始傳播,但由於空間膨脹,導致波長隨着時間的推移而增加(根據普朗克定律,波長與能量成反比),光線越來越微弱,能量也較低。這就是別稱「遺留輻射」的來源。「最後散射面」是指我們由光子脫耦時的放射源接收到光子的來源點在空間中的集合。
因為任何建議的宇宙模型都必須解釋這種輻射,因此宇宙微波背景是精確測量宇宙學的關鍵。宇宙微波背景在黑體輻射光譜的溫度為2.72548±0.00057 K。光譜輻射dEν/dν的峰值為160.23 GHz,在微波頻率的範圍內。(若光譜輻射的定義為dEλ/dλ,則峰值波長為1.063毫米。)
研究意義
該光輝在所有方向中幾乎一致,但細微的殘留變化展現出各向異性,與預期的一樣,分布相當均勻的熾熱氣體已經擴大到目前的宇宙大小。特別的是,在天空中不同角度的光譜輻射包含相同的各向異性,或不規則性,隨區域大小變化。它們已被詳細測量,若有因物質在極小空間的量子攝動而起的微小溫度變化,且膨脹到今日可觀測的宇宙大小,應該會與之吻合。這是一個非常活躍的研究領域,科學家同時尋求更好的數據(例如,普郎克衛星)和更好的宇宙膨脹初始條件。雖然許多不同的過程都可產生黑體輻射的一般形式,但沒有比大爆炸模型更能解釋漲落。因此,大多數宇宙學家認為,宇宙大爆炸模型最能解釋宇宙微波背景。
在整個可視宇宙中有高度的一致性,黯淡卻已測得的各向異性非常廣泛的支持大爆炸模型,尤其是ΛCDM模型。此外,威爾金森微波各向異性探測器及宇宙泛星系偏振背景成像實驗觀測相距大於再複合時期之宇宙視界角尺度上漲落間的相關性。此相關可能為非因果的微調,或因宇宙暴脹產生。
視頻
宇宙微波背景 相關視頻
參考文獻
- ↑ 天文學家觀測宇宙最古老的光:源自古老黑洞噴流,新浪科技,2016-2-29
- ↑ 微波背景輻射的發現(獲諾貝爾獎)——彭齊亞斯和威爾遜,CSDN博客,2017-12-25