平行宇宙
多元宇宙是一个理论上的无限个或有限个可能的宇宙的集合,包括了一切存在和可能存在的事物:所有的空间、时间、物质、能量以及描述它们的物理定律和物理常数。多元宇宙所包含的各个宇宙被称为平行宇宙(parallel universes)。也称平行世界(parallel worlds)、平行时空(parallel spacetimes)、平行次元(parallel dimensions)和代替宇宙(alternative universes)。 通常所说的平行宇宙,一般是指在我们的宇宙之外还可能存在的与我们所认知的宇宙类似的其他宇宙(即分类上的第一层平行宇宙)。
目录
发展历程
思想雏形 公元前5世纪,德谟克利特就提出“无数世界”的概念,认为“无数世界”是原子通过自身运动形成的。他说:“原子在虚空中任意移动着,而由于它们那种急剧、凌乱的运动,就彼此碰撞了,并且,在彼此碰在一起时,因为有各种各样的形状,就彼此勾结起来,这样就形成了世界及其中的事物,或毋宁说形成了无数世界。” 公元前4世纪,伊壁鸠鲁表述了世界多元性的思想:“存在着无限多个世界,它们有的像我们的世界,有的不像我们的世界。”“在一切世界里,都有我们这个世界里所见到的动物、植物以及其他事物。” 公元前1世纪,卢克莱修指出,在我们这个“可见的世界”之外还存在着“其他的世界”,居住着“其他的人类和野兽的种族。” 莱布尼茨提出了他的“可能世界”的概念,设想在必然世界(可观测的宇宙)范围之外还存在着无穷多个“可能世界”。他认为世界由无限的单子组合而成,单子之间没有因果关系,而是某种前定的和谐关系,单子虽然各自独立,但它们之间有品极高低的差异。莱布尼兹把某个现实事件的出现,例如,具体的人,阐释为许多单子组合的结果,各种不同的组合的结果与单子中更胜一筹的单子的主导作用有关。这意味着世界可以用不同的样子,任何事件都是偶发的,甚至整个宇宙也是如此。 正式提出 物理学家休·艾弗雷特三世提出了自己对量子测量问题的想法。他指出,在量子力学中,存在多个平行的世界,在每个世界中,每次量子力学测量的结果各自不同,因此不同的历史发生在不同的平行宇宙中。多世界解释认为,对测量装置的观察,会使得测量装置被分解为两个。并且在这个测量链上,这种分解会不断地进行下去。伴随着这种分解,一定有一个完全的宇宙的复制。也就是说,只要有一个量子测量发生,那么,每个宇宙分支,以及这个分支中的分量就会导致一个可能的测量结果。每个处在特殊宇宙分支中的人都会认为,他的测量结果和所处的宇宙是唯一存在的。也就是说,一次测量产生了一次新的宇宙。这些各自不同的新宇宙,除非完全相同,否则绝无重合的可能。这一理论的发表,标志着平行宇宙概念的正式提出
基本概要
平行宇宙是指从某个宇宙中分离出来,与原宇宙平行存在着的既相似又不同的其他宇宙。在这些宇宙中,也有和我们的宇宙以相同的条件诞生的宇宙,还有可能存在着和人类居住的星球相同的、或是具有相同历史的行星,也可能存在着跟人类完全相同的人。同时,在这些不同的宇宙里,事物的发展会有不同的结果:在我们的宇宙中已经灭绝的物种在另一个宇宙中可能正在不断进化,生生不息。 平行作用力的平行宇宙,对立人类的万有引力星球宇宙,平行作用力既不重合,也不相交,可谓“井水不犯河水”,导致纯基本粒子宇宙,与人类的万有引力宇宙纯星球刚好对立。 有学者描述平行宇宙时用了这样的比喻,它们可能处于同一空间体系,平行作用力平行运动,就好像同在一条铁路线上疾驰的先后两列火车;它们有可能处于同一时间体系,但空间体系不同,就好像同时行驶在立交桥上下两层通道中的小汽车。[1]
提出背景
平行宇宙的概念,并不是因为时间旅行悖论提出来的,它是来自量子力学,因为量子力学有一个不确定性,就是量子的不确定性。平行宇宙概念的提出,得益于现代量子力学的科学发现。 在20世纪50年代,有的物理学家在观察量子的时候,发现每次观察的量子状态都不相同。而由于宇宙空间的所有物质都是由量子组成,所以这些科学家推测既然每个量子都有不同的状态,那么宇宙也有可能并不只是一个,而是由多个类似的宇宙组成。 哥本哈根解释 从20世纪20年代起,许多物理学家都为量子力学中,微观粒子的状态用波函数(Wave function)来描述。当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的概率出现(宏观物体处于某一状态时,它的力学量具有确定的数值)。也就是说,微观粒子的运动具有不确定性和概率性。波函数就能描述微观粒子在空间分布的概率。 物理学中著名的“单电子双缝干涉”实验正是微观粒子运动不确定性和随机性的体现。在这个实验中,单电子通过双缝后竟然发生了干涉。在经典力学看来,电子在同一时刻只能通过一条缝,它不可能同时通过两条缝并发生干涉;而根据量子力学,电子的运动状态是以波函数形式存在,电子有可能在同一时刻既通过这条狭缝,又通过那条狭缝,并发生干涉。但是,当科学家试图通过仪器测定电子究竟通过了哪条缝时,永远只会在其中的一处发现电子。两个仪器也不会同时侦测到电子,电子每次只能通过一条狭缝。这看起来好像是测量者的观测行为改变了电子的运动状态,这种反常的现象又作何解释呢,物理学家玻尔提出了著名的“哥本哈根解释”:当人们未观测时,电子在两条缝位置都有存在的概率;但是,一旦被测量了,比如说测得该电子在左缝位置,电子有了准确的位置,它在该点的概率为1,其他点的概率为0。也就是说,该电子的波函数在被测量的瞬间“塌缩”到了该点。 玻尔把观察者及其意识引入了量子力学,使其与微观粒子的运动状态发生关系。但观察者和“塌缩”的解释并不十分清晰和令人信服,也受到了很多科学家的质疑。例如,塌缩是如何发生的,是在一瞬间就发生,还是要等到光子进入人们的眼睛并在视网膜上激起电脉冲信号后才开始。 多世界解释 那么,有没有办法绕过这所谓的“塌缩”和“观测者”,从本应研究客观规律的物理学中剔除观察者的主观成分呢。 埃弗雷特提出了一个大胆的想法:如果波函数没有“塌缩”,则它必定保持线性增加。也就是说,上述实验中电子即使再观测后仍然处在左/右狭缝的叠加状态。埃弗雷特由此进一步提出:人们的世界也是叠加的,当电子穿过双缝后,处于叠加态的不仅仅是电子,还包括整个的世界。也就是说,当电子经过双缝后,出现了两个叠加在一起的世界,在其中的一个世界里电子穿过了左边的狭缝,而在另一个世界里,电子则通过了右边的狭缝。这样,波函数就无需“塌缩”,去随机选择左还是右,因为它表现为两个世界的叠加:生活在一个世界中的人们发现在他们那里电子通过了左边的狭缝,而在另一个世界中,人们观察到的电子则在右边。以“薛定谔的猫”来说,埃弗雷特指出两只猫都是真实的。有一只活猫,有一只死猫,但它们位于不同的世界中。问题并不在于盒子中的发射性原子是否衰变,而在于它既衰变又不衰变。当观测者向盒子里看时,波函数本身会坍塌,整个世界分裂成它自己的两个版本。这两个版本在其余的各个方面是完全相同的。唯一的区别在于其中一个版本中,原子衰变了,猫死了;而在另一个版本中,原子没有衰变,猫还活着。前述所说的“原子衰变了,猫死了;原子没有衰变,猫还活着”这两个世界将完全相互独立平行地演变下去,就像两个平行的世界一样。量子过程造成了“两个世界”,这就是埃弗雷特前卫的“多世界解释”。 这个解释的优点是:薛定谔方程始终成立,波函数从不塌缩,由此它简化了基本理论。它的问题是:设想过于离奇,付出的代价是这些平行的世界全都是同样真实的。这就难怪有人说:“在科学史上,多世界解释无疑是目前所提出的最大胆、最野心勃勃的理论。”
研究前景
科学家将会有多种方法检验这些平行宇宙的理论,甚至可能排除其中的一些。在今后几十年,随着宇宙测量技术的巨大进步,通过诸如宇宙微波背景辐射探测、大尺度物质分布测量等,科学家会进一步限定空间的弯曲和拓扑结构,从而检验第一层平行宇宙理论。而更精确的暴胀测量,可以用来检验第二层平行宇宙的理论。天体物理学和高能物理学的共同进步,也会确定物理常量的微调程度,从而削弱或加强第二层的存在可能。 如果全球制造量子计算机的努力能够成功。那么它将会为第三层宇宙的存在提供进一步的证据,因为它在本质上要利用第三层平行宇宙的平行性来做平行计算。相反,纠正不守恒的实验证据则会排除第三层。最后,现代物理的重大挑战,统一广义相对论和量子场论的成功或失败,会给第四层宇宙的研究带来更多启示。科学家可能最终找到一个和人们的宇宙相匹配的数学结构,也可能突然碰到不可思议的数学有效性极限,从而不得不放弃第四层。 [2]
理论争议
针对平行宇宙的主要争论在于,它们很浪费并且很离奇,来依次考虑这两点。首先,平行宇宙理论很容易被奥卡姆剃刀原理所攻击,因为它们假设了其他宇宙存在,而人们却永远观测不到。为何自然在本体上如此浪费,并沉溺于这些多到无穷无尽的不同世界,但这一点也可以反过来支持平行宇宙。当人们觉得自然过于浪费时,人们到底是在困惑关于它浪费的哪一点,显然不是“空间”,因为标准的平坦宇宙模型中无限的体积并没有引起这样的反对。也不是“物质”或“原子”——理由相同,一旦已经浪费了无限的东西,谁在乎再浪费多点呢。所以,这种令人困惑的“浪费”倒不如说是一种简化,它减少了说明所有这些不可见世界所需的信息量。然而,正如泰马克详细讨论过的那样,整个集合往往要比集合中的单个元素简单得多。例如,一个普通整数n的算法信息内容在 量级上,这就是将它用二进制写出来所需要的比特数。然而,所有整数的集合,1、2、3、…,只需要寥寥几行计算机程序就能生成,所以整个集合的算法复杂度要远小于其中某个整数。同样,爱因斯坦引力场方程的全部理想流体解的集合,算法复杂度要远低于其中某个特解,因为前者只需要很少几个方程就能描述,而后者要求在某个超曲面指定大量的初始数据。不严格地说,当人们把注意力局限在一个集合中的某个特定元素上时,表观信息的内容增加了,却失去了将所有元素考虑进来时整个系统内在的对称性和简单些。在这个意义上,更高层的平行宇宙具有更低的算法复杂度。从通常宇宙升到第一层平行宇宙,就不再需要指定初始条件,升到第二层,就不需要指定物理常数,到了包含所有数学结构的第四层平行宇宙,本质上就不存在算法复杂度了。只有从青蛙视角,从观测者的主观感觉来看,才有那些信息富余和复杂性。可以证明,平行宇宙论要比只取一个集合元素作为物理存在的单个宇宙理论经济得多。 第二个普遍的抱怨是,平行宇宙太离奇了。但这个反对多半来自审美上,而非科学上的考虑,然而正如上面提到的,这个意见只有在亚里士多德的世界观中才有意义。在柏拉图模型中,如果鸟的视角和青蛙视角足够不同,很可能看到的是,观察者会抱怨正确的TOE如此离奇,而每个迹象都说明这正是人们所处的情形。人们所感到的离奇也没有什么好大惊小怪的,因为进化只赋予了人们对日常物理的直觉,能够使人们远古的祖先生存下来。但由于有了智慧和创造,人们已经比只有一般内部观点的青蛙视角稍微多窥见了一些东西,可以确信的是,人们在超出人类原始认知的任何地方到遭遇了奇异现象:高速(钟慢效应)、小尺度(量子粒子能同时存在于好几个地方)、大尺度(黑洞)、低温(能向上流的液氦)、高温(碰撞粒子能改变身份),等等。所以,物理学家大体上已经接受了,鸟的视角和青蛙视角是很不相同的。量子场论的一个现代流行观点是,标准模型也仅仅只是一个有效的理论,是另一个还没发现的理论的低能极限,而后者与舒服的经典概念相去甚远(例如,包含十维的弦)。许多实验学家已经对这么多“离奇”(但重复性很好)的结果感到麻木了,他们简单地接受了“这个世界就是一个比人们原想的世界更离奇”这样的观点,然后埋头继续计算。
参考文献
- ↑ 梦境是大脑潜意识的欲望,还是与平行宇宙有关?科学家给出答案!网易订阅
- ↑ 平行宇宙真的存在吗?澎湃新闻