林祥
人物简历
2018/11至2019/11 英国Bradford大学,访问学者,高分子加工成型及功能材料
2014/03至2016/06 北京科技大大学化生学院,博士后,功能高分子复合材料加工
2010/09至2013/12 北京化工大学机电工程学院,工学博士,高分子加工成型
2007/09至2010/07 北京化工大学机电工程学院,工学硕士,加工流变理论及仪器设计
2003/09至2007/07 北京化工大学机电工程学院,工学学士,机械工程及自动化
科研方向
高分子复合材料的加工及纳米复合材料的性能调控 特种聚氨酯功能材料的材料研发及工艺技术; 导电/导热聚氨酯材料的结构设计及制备; 高分子材料加工流变学及增材制造 3D打印过程的流变学研究及打印制件的力学增强 原理; 加工过程的数字化研究; 全生物降解功能高分子材料的制备与加工 纳米复合材料的制备与加工; 水溶性高分子复合材料的相态界面调控,结构设计与性能表征; 纳米复合材料的加工流变特性表征及应用; 社会职务:中国塑协专家委员会委员,中英科技桥(Science Bridge China-UK)先进高分子材料实验联合研究中心(AMRI)成员
科研业绩
Ø 国家军委科委重点专项2022,****子课题
Ø 国家自然科学基金面上项目2022年(52173028,直接经费58万)
Ø NSFC-浙江省联合基金重点支持项目(共256万,北科128万),子课题,参与
Ø 国家173重点专项,子课题负责人,162万,2019-2024,在研;
Ø 西安204所氟氮资源国重实验室开放基金,20万,2020-2022,主持,在研;
Ø 中石化页岩油气国家重点实验室开放基金,13万,2020-2021,主持,在研;
Ø 国家自然科学青年基金项目:NSFC 51503017(23.2万),2016-2018,主持,结题;
Ø 国家自然科学基金面上项目:NSFC 51473108(75万),2015-2018 ,子课题15万,结题;
Ø 中国博士后研究基金:2015M5570928(5万),2015-2016 ,主持,结题;
Ø 中央高校基本科研业务基金,FRF-TP-14-013A1,FRF-TP-15-019A2,17万,2014-2016,结题;
Ø 企业项目(中石化石油工程技术研究院),2019-**-FW1907-0021,40万,主持,结题;
学术成果
论文论著
[1] Lin, X.; Gao, J.; Wang, J.; Wang, R.; Gong, M.; Zhang, L.; Lu, Y.; Wang, D.; Zhang, L. Desktop printing of 3D thermoplastic polyurethane parts with enhanced mechanical performance using filaments with varying stiffness. Additive Manufacturing 2021, 47, 102267.
[2] Xiang Lin* et al. Experimental analysis of the tensile property of FFF-printed elastomers. Polymer Testing, 2020, 90: 106687.
[3] Liang Zhang, Xiang Lin et al. High-dielectric-permittivity silicone rubbers incorporated with polydopamine-modified ceramics and their potential application as dielectric elastomer generator. Materials Chemistry and Physics, 2020, 241: 122373.
[4] Xiang Lin * et al. Highly improved PP/CNTs sheet prepared by tailoring crystallization morphology through solid-phase die drawing and multilayer hot compression. Polymer Crystallization, 2020, online.
[5] Xiang Lin* et al. Breakage of CNT agglomerates within polypropylene matrix by solid phase die drawing. J. Appl. Polym. Sci., 2020, accepted.
[6] Xiang Lin* et al. Tensile properties and die swell behaviours of highly filled polypropylene nanocomposites. Plastics, Rubber and Composites, 2020, 49(2): 47–56.
[7] Xiang Lin* et al. Superior Stretchable Conductors by Electroless Plating of Copper on Knitted Fabrics. ACS Appl. Electron. Mater. 2019, 1: 397−406.
[8] Yu Yang, Minhao Yang, Sumei Zhang, Xiang Lin, Zhi-Min Dang, Dongrui Wang. Photoinduced healing of polyolefin dielectrics enabled by surface plasmon resonance of gold nanoparticles. J. Appl. Polym. Sci., 2019, 136, 47158.
[9] Xiang Lin * et al. Influence of the morphological structure of carbon nanotubes on the viscoelasticity of PMMA-based nanocomposites. J. Appl. Polym. Sci., 2018, 135, 46444.
[10] Xiang Lin* et al. Dependence of Rheological Behaviors of Polymeric Composites on the Morphological structure of Carbonaceous Nanoparticles. J. Appl. Polym. Sci., 2018, 135, 46416.
[11] Xiang Lin* et al. Experimental evaluation of the pressure sensitivity of molten polymer viscosity with a triple-stage capillary rheometer. Appl. Rheol., 2018, 28 (2), 25503.
[12] Xiang Lin* et al. Enhanced dielectric properties of immiscible poly (vinylidene fluoride)/low density polyethylene blends by inducing multilayered and orientated structures. Composites Part B, 2017, 114: 58-68.
[13] Xiang Lin et al. Improved dielectric performance of polypropylene/multi-walled carbon nanotubes nanocomposites by solid phase orientation. J. Appl. Polym. Sci., 2016, 133: 42893.
[14] Xiang Lin et al. Experimental Study of the Rheological, Mechanical and Dielectric Properties of LDPE/MgO Nanocomposites. J. Appl. Polym. Sci., 2016, 133: 43038.
[15] Xiang Lin et al. Enhanced Electric Displacement Induce Large Energy Density in Polymer Nanocomposite Containing Core-Shell Structured BaTiO3@TiO2 Nanofibers. Journal of Materials Chemistry A, 2016, 4: 2314-2320.
[16] Xiang Lin et al. Effect of the compatibility on dielectric performance and breakdown strength of poly(vinylidene fluoride)/low density polyethylene blends. Journal of Applied Polymer Science, 2015, 132: 42507.
[17] Xiang Lin et al. Capillary Study on Geometrical Dependence of Shear Viscosity of Polymer melts. Journal of Applied Polymer Science, 2014, 131(6): 39982.
[18] Junwei Zha, Xiang Lin et al. Improved mechanical and electrical properties in electrospun polyimide/multiwalled carbon nanotubes nanofibrous composites. Journal of Applied Physics, 2014, 116, 134104.
[19] Xiang Lin et al. Shear-induced Crystallization Morphology and Mechanical Property of High Density Polyethylene in Micro-injection molding. Journal of Polymer Research, 2013, 20(4): 1-12
[20] Xiang Lin et al. Geometrical Dependence of Viscosity of Polymethylmethacrylate Melt in Capillary Flow. Journal of Applied Polymer Science, 2013, 130: 3384-3394.
[21] 译著:《国际塑料手册》,北京:化学工业出版社,2010年;
[22] 译著:《双螺杆挤出技术》,北京:化学工业出版社,2012年;
[23] 译著:《橡塑挤出模具与工程模拟》,北京,化学工业出版,2019年;
[24] 专利:ZL 2009 10076987.4,任冬云、林祥等:一种广义牛顿流体唯一真实黏度的装置和方法
专利:ZL 2016 10393236.5,张立群、林祥等:一种多阶螺杆挤出式聚烯烃卤化设备及聚烯烃卤化方法[1]