開啟主選單

求真百科

氧氣

中文名稱:氧氣

外文名稱:Oxygen

相對分子質量:32

發現人:馬和,約瑟夫·普里斯特利,卡爾·威廉·舍勒

命名時間:1777年

命名人:拉瓦錫

物理性質:無色無味氣體(常溫下)

化學式:O₂

氧氣,化學式O₂,相對分子質量32.00,無色無味氣體,氧元素最常見的單質形態。熔點-218.4℃,沸點-183℃。難溶於水,1L水中溶解約30mL氧氣。在空氣中氧氣約占21% 。[1]

液氧為天藍色液體。固氧為藍色晶體。常溫下不是很活潑,與許多物質都不易產生作用。但在高溫下則很活躍,能與多種元素直接化合,這與氧原子的電負性僅次於氟。

氧在自然界中分布最廣,占地殼質量的48.6%,是豐富度最高的元素。在烴類氧化、廢水處理、火箭推進劑以及航空、航天和潛水中供動物及人進行呼吸等方面均需要用氧。動物呼吸、燃燒和一切氧化過程(包括有機物)都消耗氧氣。[2]

在金屬的切割和焊接中是用純度93.5%~99.2%的氧氣與可燃氣(如乙炔)混合,產生極高溫度的火焰,從而使金屬熔融。為了強化硝酸和硫酸的生產過程也需要氧。不用空氣而用氧與水蒸氣的混合物吹人煤氣氣化爐中,能得到高熱值的煤氣。醫療用氣極為重要。

目錄

簡史

普利斯特里對氧氣的研究

普利斯特里從布萊克煅燒石灰石對CO₂的發現受到啟發,利用凸透鏡聚集太陽光使一些物質燃燒或分解放出氣體並進行研究。1774年8月1日,普利斯特里終於成功地製得了氧氣,成為化學史上有重大意義的事件。

他的實驗非常簡單,把氧化汞放在一個充滿水銀的玻璃瓶里,然後,把玻璃瓶倒放在水銀槽中,玻璃瓶完全被水銀充滿,空氣全被排除掉,氧化浮在最上面。然後,他用凸透鏡聚集太陽光,照射到氧化汞上,使氧化汞受熱。

經過長期加熱,溫度逐漸升高,氧化汞受熱分解成,並放出氧氣。於是,氧氣聚集起來排走玻璃瓶中的汞,使汞面降低。氣體空間體積不斷增加,直到氣體體積為氧化汞體積的三四倍為止。其反應方程式為:

但是,當初他並不知道製得的純淨氣體是氧氣。儘管如此,細心的普利斯特里又做了許多試驗來了解這種氣體的性質,以及它同別種「空氣」的區別。他的研究方法是:

他將研究的氣體放在玻璃瓶中,倒一些水進去,該氣體不溶解。 他把燃燒的蠟燭放進該氣體中,蠟燭竟放出耀眼的強光。 他把一隻老鼠放到充滿該氣體的瓶子裡,老鼠活蹦亂跳,很自在,他猜想人吸入了可能也好受。 他用玻璃管把大瓶中的氧氣吸入肺中,並記下自己的感覺:「我覺得十分愉快,我肺部的感覺好像和平常呼吸空氣一樣,沒有什麼不適。而且,吸進這種氣體後,好久好久,身體還是十分輕鬆愉快。也許,有一天,誰能斷定這種氣體不會變成時髦的奢侈品呢?不過。現在,世界上能夠享受這種氣體的愉快,只有兩隻老鼠和我自己。」 普氏從上述實驗中得出,該氣體有助燃、助呼吸作用,這些性質與一般空氣類似,但作用更強。但是,他把氧氣所這種新氣體錯誤地用燃素說來解釋,並把製得的氧氣稱為「脫燃素空氣」。由於運用了錯誤的理論,這種命名是不恰當的。

舍勒對氧氣的發現

1772年,舍勒對空氣進行研究後,他首先認識到氧氣是空氣的一種重要成分。他用硫磺和鐵粉混合,在空氣中燃燒,消耗掉鐘罩中空氣中的氧氣而製得氮氣,當時他稱它為「濁氣」或「用過的空氣」,或能使人死亡的氣體。

經過思索,舍勒明白了,原來當時人們認為空氣是一種元素的觀點是錯誤的。他猜想:空氣是兩種不同物質的混合,一種是濁氣,能使人死亡的空氣;一種是能使人活命的空氣,能幫助燃燒,在燃燒中消失。於是,舍勒產生了興趣,並開始了他的實驗。

1773年,他把硝石(KNO3)裝進曲頸瓶,瓶口系一個排完空氣的豬膀胱,再把曲頸瓶放到火爐上去燒。硝石融化時分解,放出一種氣體,很快把豬膀胱充滿了,這種氣體正是那種能活命的氣體,即現在所知道的氧氣。

舍勒進行了仔細的鑑別,他把紅熱的木炭扔到充滿「能活命的氣體」的瓶中,木炭迅速燃燒,光亮耀眼,比在普通空氣中燃燒得更快更亮。舍勒將1/5的這種氣體和4/5濁氣混合於瓶中,蠟燭能正常燃燒,老鼠也同在普通空氣中一樣呼吸。由此他確定這種氣體是一種純淨的能活命的氣體。

舍勒給這種氣體命名為「火空氣」,因為他發現除硝石外,加熱氧化汞、高錳酸鉀、碳酸銀、碳酸汞,均能釋放出氧氣來。

拉瓦錫對氧氣的研究

拉瓦錫對氧氣的發現是在普里斯特里啟發下完成的。1774年,拉瓦錫用汞灰(HgO)的合成與分解實驗製得氧氣,並對它進行了系統的研究,發現它能與很多非金屬單質合成多種酸,故命名為「酸氣」(希臘文Oxygene)。

拉瓦錫通過氧氣的實驗,提出了燃燒的氧化學說,推翻了燃素說,發動了化學史上著名的化學革命,使過去以燃素說形式倒立着的化學正立過來。因此,雖然不是他首先發現氧氣,但恩格斯還是稱他為「真正發現氧氣的人」,而舍勒和普利斯特里是「當真理碰到鼻尖上的時候還是沒有得到真理」。

1802年,德國東方學者克拉普羅特偶然讀到一本64頁的漢文手抄本,書名是《平龍認》,作者是馬和,著作年代是唐代至德元年(公元756年)。克拉普羅特讀完此書以後,驚奇地發現,這本講述如何在大地上尋找「龍脈」的堪輿家著作,竟揭示了深刻的科學道理:空氣和水裡都有氧氣存在。

1807年,克拉普羅特在彼得堡俄國科學院學術討論會上宣讀了一篇論文,題目是《第八世紀中國人的化學知識》,其中提到,空氣中存在「陰陽二氣」,用火硝、青石等物質加熱後就能產生「陰氣」;水中也有「陰氣」,它和「陽氣」緊密結合在一起,很難分解。克拉普羅特指出,馬和所說的「陰氣」,就是氧氣。證明中國早在唐朝就知道氧氣的存在並且能夠分解它,比歐洲人發現氧氣足足早了1000多年。克拉普羅特這篇論文使在場的科學家都感到驚奇不已。

名稱由來

氧氣(Oxygen)希臘文的意思是「酸素」,該名稱是由法國化學家拉瓦錫所起,原因是拉瓦錫錯誤地認為,所有的酸都含有這種新氣體。日文里氧氣的名稱仍然是「酸素」。

氧氣的中文名稱是清朝徐壽命名的。他認為人的生存離不開氧氣,所以就命名為「養氣」即「養氣之質」,後來為了統一就用「氧」代替了「養」字,便叫這「氧氣」。

分子結構

O₂分子內的化學鍵通常是共價鍵。

從實驗上來說,順磁共振光譜證明O有順磁性,還證明O有兩個未成對的電子。說明原來的以雙鍵結合的氧分子結構式不符合實際。

氧氣的結構如右圖所示,基態O₂分子中並不存在雙鍵,氧分子裡形成了兩個三電子鍵。

氧的分子軌道電子排布式是,在π軌道中有不成對的單電子,所以O₂分子是所有雙原子氣體分子中唯一的一種具有偶數電子同時又顯示順磁性的物質。

兩個氧原子進行sp軌道雜化,一個單電子填充進sp雜化軌道,成σ鍵,另一個單電子填充進p軌道,成π鍵。氧氣是奇電子分子,具有順磁性。

單線態氧和三線態氧

普通氧氣含有兩個未配對的電子,等同於一個雙游離基。兩個未配對電子的自旋狀態相同,自旋量子數之和S=1,2S+1=3,因而基態的氧分子自旋多重性為3,稱為三線態氧。

在受激發下,氧氣分子的兩個未配對電子發生配對,自旋量子數的代數和S=0,2S+1=1,稱為單線態氧。

空氣中的氧氣絕大多數為三線態氧。紫外線的照射及一些有機分子對氧氣的能量傳遞是形成單線態氧的主要原因。單線態氧的氧化能力高於三線態氧。

單線態氧的分子類似烯烴分子,因而可以和雙烯發生狄爾斯-阿爾德反應。

工業製法

1、分離液態空氣法

在低溫條件下加壓,使空氣轉變為液態,然後蒸發,由於液態氮的沸點是‐196℃,比液態氧的沸點(‐183℃)低,因此氮氣首先從液態空氣中蒸發出來,剩下的主要是液態氧。

空氣中的主要成分是氧氣和氮氣。利用氧氣和氮氣的沸點不同,從空氣中製備氧氣稱空氣分離法。首先把空氣預冷、淨化(去除空氣中的少量水分、二氧化碳、乙炔、碳氫化合物等氣體和灰塵等雜質)、然後進行壓縮、冷卻,使之成為液態空氣。然後,利用氧和氮的沸點的不同,在精餾塔中把液態空氣多次蒸發和冷凝,將氧氣和氮氣分離開來,得到純氧(可以達到99.6%的純度)和純氮(可以達到99.9%的純度)。如果增加一些附加裝置,還可以提取出氬、氖、氦、氪、氙等在空氣中含量極少的稀有惰性氣體。由空氣分離裝置產出的氧氣,經過壓縮機的壓縮,最後將壓縮氧氣裝入高壓鋼瓶貯存,或通過管道直接輸送到工廠、車間使用。使用這種方法生產氧氣,雖然需要大型的成套設備和嚴格的安全操作技術,但是產量高,每小時可以產出數千、萬立方米的氧氣,而且所耗用的原料僅僅是不用買、不用運、不用倉庫儲存的空氣,所以從1903年研製出第一台深冷空分制氧機以來,這種制氧方法一直得到最廣泛的應用。

2、膜分離技術

膜分離技術得到迅速發展。利用這種技術,在一定壓力下,讓空氣通過具有富集氧氣功能的薄膜,可得到含氧量較高的富氧空氣。利用這種膜進行多級分離,可以得到百分之九十以上氧氣的富氧空氣。

3、分子篩制氧法(吸附法)

利用氮分子大於氧分子的特性,使用特製的分子篩把空氣中的氧離分出來。首先,用壓縮機迫使乾燥的空氣通過分子篩進入抽成真空的吸附器中,空氣中的氮分子即被分子篩所吸附,氧氣進入吸附器內,當吸附器內氧氣達到一定量(壓力達到一定程度)時,即可打開出氧閥門放出氧氣。經過一段時間,分子篩吸附的氮逐漸增多,吸附能力減弱,產出的氧氣純度下降,需要用真空泵抽出吸附在分子篩上面的氮,然後重複上述過程。這種製取氧的方法亦稱吸附法.利用吸附法制氧的小型制氧機已經開發出來,便於家庭使用。

4、電解制氧法

把水放入電解槽中,加入氫氧化鈉或氫氧化鉀以提高水的電解度,然後通入直流電,水就分解為氧氣和氫氣。每製取一立方米氧,同時獲得兩立方米氫。用電解法製取一立方米氧要耗電12~15千瓦小時,與上述兩種方法的耗電量(0.55~0.60千瓦小時)相比,是很不經濟的。所以,電解法不適用於大量制氧。另外同時產生的氫氣如果沒有妥善的方法收集,在空氣中聚集起來,如與氧氣混合,容易發生極其劇烈的爆炸。所以,電解法也不適用家庭制氧的方法。

主要用途

  • 冶煉工藝:在煉鋼過程中吹以高純度氧氣,氧便和碳及磷、硫、硅等起氧化反應,這不但降低了鋼的含碳量,還有利於清除磷、等雜質。而且氧化過程中產生的熱量足以維持煉鋼過程所需的溫度,因此,吹氧不但縮短了冶煉時間,同時提高了鋼的質量。高爐煉鐵時,提高鼓風中的氧濃度可以降焦比,提高產量。在有色金屬冶煉中,採用富氧也可以縮短冶煉時間提高產量。
  • 化學工業:在生產合成氨時,氧氣主要用於原料氣的氧化,以強化工藝過程,提高化肥產量。再例如,重油的高溫裂化,以及煤粉的氣化等。
  • 國防工業:液氧是現代火箭最好的助燃劑,在超音速飛機中也需要液氧作氧化劑,可燃物質浸漬液氧後具有強烈的爆炸性,可製作液氧炸藥。
  • 醫療保健:供給呼吸:用於缺氧、低氧或無氧環境,例如:潛水作業、登山運動、高空飛行、宇宙航行、醫療搶救等時。
  • 其它方面:它本身作為助燃劑與乙炔、丙烷等可燃氣體配合使用,達到焊割金屬的作用,各行各業中,特別是機械企業里用途很廣,作為切割之用也很方便,是首選的一種切割方法。

視頻

光合作用產生氧氣

雙氧水制氧氣

參考資料