開啟主選單

求真百科

波恩哈德·黎曼

波恩哈德·黎曼(公元1826—1866年),是德國著名的數學家,他在數學分析和微分幾何方面作出過重要貢獻,他開創了黎曼幾何,並且給後來愛因斯坦的廣義相對論提供了數學基礎。

2018年9月,邁克爾·阿蒂亞聲明證明黎曼猜想,9月24日,邁克爾·阿蒂亞貼出了他證明黎曼假設(猜想)的預印本。

1826年,他出生於漢諾威王國(今德國)的小鎮布列斯倫茨(Breselenz)。他的父親弗雷德里希·波恩哈德·黎曼是當地的路德會牧師。他在六個孩子中排行第二。他是個安靜多病而且害羞的人,終生喜歡獨處。他的同事戴德金(Dedekind)是少數了解他的人之一。據戴德金說,除了黎曼真正糟糕的身體狀況之外,他還是 一名疑病症患者。

1840年,黎曼搬到漢諾威和祖母生活並進入中學學習。

1842年,祖母去世後,他搬到呂內堡(Lüneburg)的約翰紐姆(Johanneum)。

1846年,黎曼進入哥廷根大學學習哲學和神學。在此期間他去聽了一些數學講座,包括高斯關於最小二乘法的講座。在得到父親的允許 後,他改學數學。在大學期間有兩年去柏林大學就讀 ,受到 C.G.J.雅可比和P.G.L.狄利克雷的影響。

1847年春,黎曼轉到柏林大學,投入雅戈比、狄利克雷和Steiner門下。兩年後他回到哥廷根。

1851年,在柏林大學獲博士學位 。

1851年,論證了複變函數可導的必要充分條件( 即柯西-黎曼方程) 。藉助狄利克雷原理闡述了黎曼映射定理 ,成為函數的幾何理論的基礎。

1853年,定義了黎曼積分並研究了三角級數收斂的準則。

1854年,發揚了高斯關於曲面的微分幾何研究,提出用流形的概念理解空間的實質,用微分弧長度的平方所確定的正定二次型理解度量,建立了黎曼空間的概念,把歐氏幾何、非歐幾何包進了他的體系之中。

1854年,成為格丁根大學的講師,

1857年,初次登台作了題為「論作為幾何基礎的假設」的演講,開創了黎曼幾何,並為愛因斯坦的廣義相對論提供了數學基礎。

1857年,發表的關於阿貝爾函數的研究論文,引出黎曼曲面的概念 ,將阿貝爾積分與阿貝爾函數的理論帶到新的轉折點並做系統的研究。其中對黎曼曲面從拓撲、分析、代數幾何各角度作了深入研究。創造了一系列對代數拓撲發展影響深遠的概念,闡明了後來為G.羅赫所補足的黎曼-羅赫定理。1857年,升為哥廷根大學的編外教授。1859年,接替狄利克雷成為教授。並發表論文《論小於某給定值的素數的個數》,提出黎曼假設。

1862年,他與愛麗絲·科赫(Elise Koch)結婚。

1866年7月20日,他在第三次去意大利修養的的途中因肺結核在塞拉斯卡(Selasca)去世。

1859年,發表的關於素數分布的論文《論小於某給定值的素數的個數》中,研究了黎曼ζ函數,給出了ζ函數的積分表示與它滿足的函數方程,他指出素數的分布與黎曼ζ函數之間存在深刻聯繫。這一關聯的核心就是J(x)的積分表達式。

1854年,黎曼在格丁根大學發表的題為《論作為幾何學基礎的假設》的演說,創立了黎曼幾何學。黎曼將曲面本身看成一個獨立的幾何實體,而不是把它僅僅看作歐幾里得空間中的一個幾何實體。1915年,A.愛因斯坦運用黎曼幾何和張量分析工具創立了新的引力理論——廣義相對論。

另外,他對偏微分方程及其在物理學中的應用有重大貢獻。甚至對物理學本身,如對熱學、電磁非超距作用和激波理論等也作出重要貢獻。

黎曼的工作直接影響了19世紀後半期的數學發展,許多傑出的數學家重新論證黎曼斷言過的定理,在黎曼思想的影響下數學許多分支取得了輝煌成就。

黎曼首先提出用複變函數論特別是用ζ函數研究數論的新思想和新方法,開創了解析數論的新時期,並對單複變函數論的發展有深刻的影響 。

他是世界數學史上最具獨創精神的數學家之一,黎曼的著作不多,但卻異常深刻,極富於對概念的創造與想象。

他的名字出現在黎曼ζ函數,黎曼積分,黎曼引理,黎曼流形,黎曼空間,黎曼映照定理,黎曼-希爾伯特問題,柯西-黎曼方程,黎曼思路迴環矩陣中。