狄振华
人物简历
教育经历
2007.9-2011.6 中国科学院大气物理研究所 水文气象学专业 联合培养博士
2006.9-2011.6 北京交通大学 计算数学专业 理学博士
2002.9-2006.6 安阳师范学院 应用数学专业 理学学士
工作经历
2017.1-至今 北京师范大学陆地表层系统科学与可持续发展研究院 教学科研
2011.8-2016.12 北京师范大学全球变化与地球系统科学研究院 教学科研
研究方向
科研项目
科技部第二次青藏综合科学考察项目:“安全屏障功能与优化体系”; 2019-2024; 专题五第三子课题参与
国家自然科学基金重点项目:“中国陆表气候观测数据的渐变型不均一性”; 2020-2024;子课题主持
中科院大气所LASG开放基金: “陆面模式参数优化及其对蒸散发估算的应用研究”; 2019-2020; 主持
国家青年科学基金项目: “拟三维地下水模型与通用陆面模式(CoLM)的耦合研究”; 2014-2016; 主持
北京市优秀人才培养资助项目:“基于北京天气系统的WRF模式参数化方案组合优化研究”; 2013-2014; 主持
中央高校基本科研基金:“拟三维地下水模型与陆面过程模式的区域耦合研究”; 2013-2014; 主持
中科院大气所LASG开放基金: “陆面模式CLM4.0的参数敏感性分析研究”; 2013-2014; 主持
学术成果
著作论文
- Li, M., Di, Z.*, Duan, Q. (2021). Effect of sensitivity analysis on parameter optimization: case study based onstreamflow simulations using the SWAT model in China. Journal of Hydrology, 2021, 603, 126896
- Wang, X., Di, Z.*, Li, M., et al. (2021). Satellite-derived variation in burned area in China from 2001 to 2018 and its response to climatic factors. Remote Sensing, 2021, 13, 1287.
- Di, Z., Ye, A., Duan, Q., et al. (2021). Assessment of parametric sensitivity analysis methods based on a quasi two- dimensional groudwater model. Joural of Environmental Informatics, 37(1): 62-78.
- Di, Z., Duan, Q., Shen, C., et al. (2020). Improving WRF typhoon precipitation and intensity simulation using a surrogate-based automatic parameter optimization method. Atmosphere, 11: 89.
- Zhang, C., Di, Z.*, Duan, Q., et al. (2020). Improved land evapotranspiration simulation of the Community Land Model using a surrogate-based automatic parameter optimization method. Water, 12:943.
- Di, Z., Ao, J., Duan, Q., et al. (2019). Improving WRF model turbine-height wind-speed forecasting using a surrogate- based automatic optimization method. Atmospheric Research, 226(9): 1-16.
- Di, Z., Gong, W., Gan, Y., et al. (2019). Combinatorial optimization for WRF physical parameterization schemes: A case study of three-day typhoon simulations over the Northwest Pacific Ocean. Atmosphere,10(5): 233.
- Di, Z., Duan, Q., Wang, C., Ye, A. ,&Gong, W. (2018). Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area. Clim. Dyn. 50: 1927-1948.
- Di, Z., Duan, Q., Gong, W.,et al.(2017). Parametric sensitivity analysis of precipitation and temperature based on multi-uncertainty quantification methods in the Weather Research and Forecasting model. Sci. China Earth Sci. 60(5): 876-898.
- Duan, Q., Di, Z., Quan, J., et al.(2017). Automatic model calibration - a new way to improve numerical weather forecasting. B. Am. Meteorol. Soc. 98(5): 959-970.
- Quan, J., Di, Z., Duan, Q.,et al.(2016). An evaluation of parametric sensitivities of different meteorologicalvariables simulated by the WRF model. Q. J. Roy.Meteor.Soc.142(700): 2925-2934.
- Di, Z., Duan, Q., Gong, W., et al.(2015). Assessing WRF model parameter sensitivity: A case study with 5 daysummer precipitation forecasting in the Greater Beijing Area. Geophys.Res. Lett. 42(2):579-587.
- Di, Z., Luo, Z., Xie, Z., et al.(2012). An optimizing implicit difference scheme based on proper orthogonaldecomposition for the two-dimensional unsaturated soil water flow equation. Int. J. Numer. Meth. Fl. 68(10):1324-1340.
- 狄振华, 谢正辉, 陈亚宁. (2021). 塔里木河下游长期输水条件下河流剖面地下水埋深估算. 干旱区地理, 44(3): 659-669.[1]