电子
电子(英语: electronic),是最早发现的基本粒子。带负电,电量为1.602176634×10-19库仑,是电量的最小单元。质量为9.10956×10-31kg。 常用符号e表示。1897年由英国物理学家约瑟夫•约翰•汤姆生在研究阴极射线时发现。一切原子都由一个带正电的原子核和围绕它运动的若干电子组成。电荷的定向运动形成电流,如金属导线中的电流。利用电场和磁场,能按照需要控制电子的运动(在固体、真空中),从而制造出各种电子仪器和元件,如各种电子管、电子显微镜等。电子的波动性于1927年由晶体衍射实验得到证实。
电子 | |
---|---|
目录
基本信息
中文名 | 电子 | 质 量 | 9.10956×10-31kg千克 |
外文名 | Electron、Electronic | 发现者 | 发现者 |
表示符号 | e | 应用学科 | 化学、物理 |
所带电荷 | -1.602176634×10⁻¹⁹库仑 | 本 质 | 属于费米子 |
简介
电子(electron)是带负电的亚原子粒子。它可以是自由的(不属于任何原子),也可以被原子核束缚。原子中的电子在各种各样的半径和描述能量级别的球形壳里存在。球形壳越大,包含在电子里的能量越高。
在电导体中,电流由电子在原子间的独立运动产生,并通常从电极的阴极到阳极。在半导体材料中,电流也是由运动的电子产生的。但有时候,将电流想象成从原子到原子的缺电子运动更具有说明性。半导体里的缺电子的原子被称为空穴(hole)。通常,空穴从电极的正极"移动"到负极。 [1]
电子属于亚原子粒子中的轻子类。轻子被认为是构成物质的基本粒子之一。它带有1/2自旋,即又是一种费米子(按照费米—狄拉克统计)。电子所带电荷为e=1.6×10-19C(库仑),质量为9.11×10-31kg(0.51MeV/c2),能量为5.11×103eV,通常被表示为e⁻。电子的反粒子是正电子,它带有与电子相同的质量,能量,自旋和等量的正电荷(正电子的电荷为+1,负电子的电荷为-1)。
物质的基本构成单位——原子是由电子、中子和质子三者共同组成。中子不带电,质子带正电,原子对外不显电性。相对于中子和质子组成的原子核,电子的质量极小。质子的质量大约是电子的1840倍。
当电子脱离原子核束缚在其它原子中自由移动时,其产生的净流动现象称为电流。各种原子束缚电子能力不一样,于是就由于失去电子而变成正离子,得到电子而变成负离子。
静电是指当物体带有的电子多于或少于原子核的电量,导致正负电量不平衡的情况。当电子过剩时,称为物体带负电;而电子不足时,称为物体带正电。当正负电量平衡时,则称物体是电中性的。静电在我们日常生活中有很多应用方法,其中例子有激光打印机。
研究历史
电子是在1897年由剑桥大学卡文迪许实验室的约瑟夫•约翰•汤姆森在研究阴极射线时发现的。约瑟夫•约翰•汤姆森提出了葡萄干模型(枣糕模型)。
1897年,英国剑桥大学卡文迪许实验室的约瑟夫•约翰•汤姆森重做了赫兹的实验。使用真空度更高的真空管和更强的电场,他观察出负极射线的偏转,并计算出负级射线粒子(电子)的质量-电荷比例,因此获得了1906年的诺贝尔物理学奖。汤姆逊采用1891年乔治•斯托尼所起的名字——电子来称呼这种粒子。至此,电子作为人类发现的第一个亚原子粒子和打开原子世界的大门被汤姆逊发现了。[2] 电子并非基本粒子,100多年前,当美国物理学家Robert Millikan首次通过实验测出电子所带的电荷为1.602×10-19C后,这一电荷值便被广泛看作为电荷基本单元。然而如果按照经典理论,将电子看作“整体”或者“基本”粒子,将使我们对电子在某些物理情境下的行为感到极端困惑,比如当电子被置入强磁场后出现的非整量子霍尔效应。
英国剑桥大学研究人员和伯明翰大学的同行合作完成了一项研究。公报称,电子通常被认为不可分。剑桥大学研究人员将极细的“量子金属丝”置于一块金属平板上方,控制其间距离为约30个原子宽度,并将它们置于近乎绝对零度的超低温环境下,然后改变外加磁场,发现金属板上的电子在通过量子隧穿效应跳跃到金属丝上时分裂成了自旋子和穴子。
为了解决这一难题,1980年,美国物理学家Robert Laughlin提出一个新的理论解决这一迷团,该理论同时也十分简洁地诠释了电子之间复杂的相互作用。然而接受这一理论确是要让物理学界付出“代价”的:由该理论衍生出的奇异推论展示,电流实际上是由1/3电子电荷组成的。
但1981年有物理学家提出,在某些特殊条件下电子可分裂为带磁的自旋子和带电的空穴子。2018年11月16日,国际计量大会通过决议,1安培被定义为“1s内通过(1.602176634)⁻¹×10^18个电子电荷所对应的电流”。
性质特征
电子块头小重量轻(比μ介子还轻205倍),被归在亚原子粒子中的轻子类。轻子是物质被划分的作为基本粒子的一类。电子带有二分之一自旋,满足费米子的条件(按照费米-狄拉克统计)。电子所带电荷约为-1.6×10-19库仑,质量为9.10956×10-31kg(0.51MeV/c2)。通常被表示为e⁻。与电子电性相反的粒子被称为正电子,它带有与电子相同的质量,自旋和等量的正电荷。电子在原子内做绕核运动,能量越大距核运动的轨迹越远,有电子运动的空间叫电子层,第一层最多可有2个电子。第二层最多可以有8个,第n层最多可容纳2n2个电子,最外层最多容纳8个电子。最后一层的电子数量决定物质的化学性质是否活泼,1、2、3电子为金属元素,4、5、6、7为非金属元素,8为稀有气体元素。
物质的电子可以失去也可以得到,物质具有得电子的性质叫做氧化性,该物质为氧化剂;物质具有失电子的性质叫做还原性,该物质为还原剂。物质氧化性或还原性的强弱由得失电子难易决定,与得失电子多少无关。
由电子与中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所组成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1842倍。当原子的电子数与质子数不等时,原子会带电,称这原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。静电在日常生活中有很多用途,例如,静电油漆系统能够将瓷漆(英语:enamel paint)或聚氨酯漆,均匀地喷洒于物品表面。
电子与质子之间的吸引性库仑力,使得电子被束缚于原子,称此电子为束缚电子。两个以上的原子,会交换或分享它们的束缚电子,这是化学键的主要成因。当电子脱离原子核的束缚,能够自由移动时,则改称此电子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在许多物理现象里,像电传导、磁性或热传导,电子都扮演了要重要的角色。移动的电子会产生磁场,也会被外磁场偏转。呈加速度运动的电子会发射电磁辐射。
电荷的最终携带者是组成原子的微小电子。在运动的原子中,每个绕原子核运动的电子都带有一个单位的负电荷,而原子核里面的质子带有一个单位的正电荷。正常情况下,在物质中电子和质子的数目是相等的,它们携带的电荷相平衡,物质呈中性。物质在经过摩擦后,要么会失去电子,留下更多的正电荷(质子比电子多)。要么增加电子,获得更多的负电荷(电子比质子多)。这个过程称为摩擦生电。
排布规律
当原子处在基态时,原子核外电子的排布遵循三个原则:[3]
(1)泡利不相容原理
(2)能量最低原理
(3)洪特规则
1、电子是在原子核外距核由近及远、能量由低至高的不同电子层上分层排布。
2、每层最多容纳的电子数为2n2个(n代表电子层数)。
3、最外层电子数不超过8个(第一层不超过2个),次外层不超过18个,倒数第三层不超过32个。
4、电子一般总是尽先排在能量最低的电子层里,即先排第一层,当第一层排满后,再排第二层,第二层排满后,再排第三层。[4]
原子理论
最早的原子模型是汤姆孙的梅子布丁模型。发表于1904年,汤姆逊认为电子在原子中均匀排列,就像带正电布丁中的带负电梅子一样。1909年,著名的卢瑟福散射实验彻底地推翻了这模型。
卢瑟福根据他的实验结果,于1911年,设计出卢瑟福模型。在这模型里,原子的绝大部分质量都集中在小小的原子核中,原子的绝大部分都是真空。而电子则像行星围绕太阳运转一样围绕着原子核运转。这一模型对后世产生了巨大影响,直到现在,许多高科技组织和单位仍然使用电子围绕着原子核的原子图像来代表自己。
在经典力学的框架之下,行星轨道模型有一个严重的问题不能解释:呈加速度运动的电子会产生电磁波,而产生电磁波就要消耗能量;最终,耗尽能量的电子将会一头撞上原子核(就像能量耗尽的人造卫星最终会进入地球大气层)。于1913年,尼尔斯•玻尔提出了玻尔模型。在这模型中,电子运动于原子核外某一特定的轨域。距离原子核越远的轨域能量越高。电子跃迁到距离原子核更近的轨域时,会以光子的形式释放出能量。相反的,从低能级轨域到高能级轨域则会吸收能量。藉著这些量子化轨域,玻尔正确地计算出氢原子光谱。但是,使用玻尔模型,并不能够解释谱线的相对强度,也无法计算出更复杂原子的光谱。这些难题,尚待后来量子力学的解释。
1916年,美国物理化学家吉尔伯特•路易士成功地解释了原子与原子之间的相互作用。他建议两个原子之间一对共用的电子形成了共价键。于1923年,沃尔特•海特勒Walter Heitler和弗里茨•伦敦Fritz London应用量子力学的理论,完整地解释清楚电子对产生和化学键形成的原因。于1919年,欧文•朗缪尔将路易士的立方原子模型cubical atom。加以发挥,建议所有电子都分布于一层层同心的(接近同心的)、等厚度的球形壳。他又将这些球形壳分为几个部分,每一个部分都含有一对电子。使用这模型,他能够解释周期表内每一个元素的周期性化学性质。
质量测量
电子的质量出现在亚原子领域的许多基本法则里,但是由于粒子的质量极小,直接测量非常困难。一个物理学家小组克服了这些挑战,得出了迄今为止最精确的电子质量测量结果。
将一个电子束缚在中空的碳原子核中,并将该合成原子放入了名为彭宁离子阱的均匀电磁场中。在彭宁离子阱中,该原子开始出现稳定频率的振荡。该研究小组利用微波射击这个被捕获的原子,导致电子自旋上下翻转。通过将原子旋转运动的频率与自旋翻转的微波的频率进行对比,研究人员使用量子电动力学方程得到了电子的质量。[5]
正电子反电子
在众多解释宇宙早期演化的理论中,大爆炸理论是比较能够被物理学界广泛接受的科学理论。在大爆炸的最初几秒钟时间,温度远远高过100亿K。那时,光子的平均能量超过1.022MeV很多,有足够的能量来创生电子和正电子对。
同时,反电子和正电子对也在大规模地相互湮灭对方,并且发射高能量光子。在这短暂的宇宙演化阶段,电子,正电子和光子努力地维持着微妙的平衡。但是,因为宇宙正在快速地膨胀中,温度持续转凉,在10秒钟时候,温度已降到30亿K,低于电子-正电子创生过程的温度底限100亿K。因此,光子不再具有足够的能量来创生电子和正电子对,大规模的电子-正电子创生事件不再发生。
可是,反电子和正电子还是继续不段地相互湮灭对方,发射高能量光子。由于某些尚未确定的因素,在轻子创生过程(英语:leptogenesis(physics))中,创生的正电子多于反电子。否则,假若电子数量与正电子数量相等,就没有电子了!大约每10亿个电子中,会有一个正电子经历了湮灭过程而存留下来。不只这样,由于一种称为重子不对称性的状况,质子的数目也多过反质子。很巧地,正电子存留的数目跟正质子多过反质子的数目正好相等。因此,宇宙净电荷量为零,呈电中性。
应用领域
电子的应用领域很多,像电子束焊接、阴极射线管、电子显微镜、放射线治疗、激光和粒子加速器等等。在实验室里,精密的尖端仪器,像四极离子阱(英语:quadrupole ion trap),可以长时间约束电子,以供观察和测量。大型托卡马克设施,像国际热核聚变实验反应堆,借着约束电子和离子等离子体,来实现受控核聚变。无线电望远镜可以用来探测外太空的电子等离子体。
在一次美国国家航空航天局的风洞试验中,电子束射向航天飞机的迷你模型,模拟返回大气层时,航天飞机四周的游离气体。
天文观测
远距离地观测电子的各种现象,主要是依靠探测电子的辐射能量。例如,在像恒星日冕一类的高能量环境里,自由电子会形成一种藉著制动辐射来辐射能量的等离子。电子气体的等离子振荡。是一种波动,是由电子密度的快速震荡所产生的波动。这种波动会造成能量发射。天文学家可以使用无线电望远镜来探测这能量。
焊接应用
电子束科技,应用于焊接,称为电子束焊接。这焊接技术能够将高达107W•cm2能量密度的热能,聚焦于直径为0.3~1.3mm的微小区域。使用这技术,技工可以焊接更深厚的物件,限制大部分热能于狭窄的区域,而不会改变附近物质的材质。为了避免物质被氧化的可能性,电子束焊接必须在真空内进行。不适合使用普通方法焊接的传导性物质,可以考虑使用电子束焊接。在核子工程和航天工程里,有些高价值焊接工件不能忍受任何缺陷。这时候,工程师时常会选择使用电子束焊接来完成任务。
印刷电路
电子束平版印刷术是一种分辨率小于一毫米的蚀刻半导体的方法。这种技术的缺点是成本高昂、程序缓慢、必须操作于真空内、还有,电子束在固体内很快就会散开,很难维持聚焦。最后这缺点限制住分辨率不能小于10nm。因此,电子束平版印刷术主要是用来制备少数量特别的集成电路。
放射治疗
技术使用电子束来照射物质。这样,可以改变物质的物理性质或灭除医疗物品和食品所含有的微生物。做为放射线疗法的一种,直线型加速器。制备的电子束,被用来照射浅表性肿瘤。由于在被吸收之前,电子束只会穿透有限的深度(能量为5~20MeV的电子束通常可以穿透5cm的生物体),电子束疗法可以用来医疗像基底细胞癌一类的皮肤病。电子束疗法也可以辅助治疗,已被X-射线照射过的区域。
粒子加速器使用电场来增加电子或正子的能量,使这些粒子拥有高能量。当这些粒子通过磁场时,它们会放射同步辐射。由于辐射的强度与自旋有关,因而造成了电子束的偏振。这过程称为索克洛夫-特诺夫效应。很多实验都需要使用偏振的电子束为粒子源。同步辐射也可以用来降低电子束温度,减少粒子的动量偏差。一当粒子达到要求的能量,使电子束和正子束发生互相碰撞与湮灭,这会引起高能量辐射发射。探测这些能量的分布,物理学家可以研究电子与正子碰撞与湮灭的物理行为。
成像技术
低能电子衍射技术(LEED)照射准直电子束于晶体物质,然后根据观测到的衍射图案,来推断物质结构。这技术所使用的电子能量通常在20~200eV之间。反射高能电子衍射(RHEED))技术以低角度照射准直电子束于晶体物质,然后搜集反射图案,从而推断晶体表面的资料。这技术所使用的电子的能量在8~20keV之间,入射角度为1~4°。
电子显微镜主要分为两种类式:穿透式和扫描式。穿透式电子显微镜的操作原理类似高架式投影机,将电子束对准于样品切片发射,穿透过的电子再用透镜投影于底片或电荷耦合元件。扫描电子显微镜用聚焦的电子束扫描过样品,就好像在显示机内的光栅扫描。这两种电子显微镜的放大率可从100倍到1 000 000倍甚至更高。应用量子隧穿效应,扫描隧道显微镜将电子从尖锐的金属针尖隧穿至样品表面。为了要维持稳定的电流,针尖会随着样品表面的高低而移动,这样即可得到分辨率为原子尺寸的样本表面影像。
自由雷射
自由电子雷射将相对论性电子束通过一对波荡器。每一个波荡器是由一排交替方向的磁场的磁偶极矩组成。由于这些磁场的作用,电子会发射同步辐射;而这辐射会同调地与电子相互作用。当频率匹配共振频率时,会引起辐射场的强烈放大。自由电子雷射能够发射同调的高辐射率的电磁辐射,而且频域相当宽广,从微波到软X-射线。不久的将来,这仪器可以应用于制造业、通讯业和各种医疗用途,像软组织手术。
参考来源
- ↑ electron:电子,techtarget信息化网,2009-05-25
- ↑ 电子,高中物理网,2001年
- ↑ 定义/电子层 编辑,互动百科网
- ↑ 原子核外电子的排布规律,豆丁网
- ↑ 电子,百度网,2019-04-08