開啟主選單

求真百科

色氨酸操縱子

來自 孔夫子舊書網 的圖片

色氨酸操縱子是中國科技名詞。

世界三大漢語詞典分別是中國大陸的《 漢語大詞典[1]》(共13冊,5.6萬詞條,37萬單詞)、中國台灣的《 中文大辭典 》(共10冊,5萬詞條,40萬單詞)以及日本的《 大漢和辭典 》(共13冊,4.9萬詞條,40萬單詞)。漢字是記錄漢語的文字[2],它已有六千年左右的歷史,是世界上最古老的文字之一。

目錄

名詞解釋

色氨酸操縱子(Trp operon)是一種重要的操縱子,是聯合使用或轉錄的一組基因,也是用來編碼生成色氨酸的元件之一。色氨酸操縱子是在許多細菌存在,但首次在大腸桿菌中得到表徵。當在環境中存在足量的色氨酸,它將不被使用。這是一個重要的學習基因調控的實驗系統,並常用來教授基因調控的知識。

基本結構編

大腸桿菌色氨酸操縱子結構較簡單,也是研究得最清楚的操縱子之一,結構基因依次排列為trpEDCBA,其中trpGD 和trpCF基因融合。trpE和trpG編碼鄰氨基苯甲酸合酶,trpD編碼鄰氨基苯甲酸磷酸核糖轉移酶,trpC編碼吲哚甘油磷酸合酶,trpF編碼異構酶,trpA和trpB分別編碼色氨酸合酶的α和β亞基。trpE的上游為調控區,由啟動子、操縱基因和162bp 的前導序列組成。5 個結構基因全長約6800bp,trpD遠側還有一個二級啟動子,在細胞生長需要過量Trp時發揮作用。

一些G+菌,如枯草桿菌色氨酸操縱子的結構有所不同,7 個結構基因中的6 個依次排列為trpEDCFBA,存在於含有12個結構基因的芳香族氨基酸超操縱子(a ro operon),第7 個結構基因,trpG存在於葉酸合成操縱子中,該酶參與Trp 和葉酸的合成。有2個啟動子參與調控,一個位於aro operon的起始位置,另一個則位於trpE 上游約200 bp處。

調控作用途徑

Trp合成途徑較漫長,消耗大量能量和前體物,如絲氨酸、PRPP、穀氨酰氨等,是細胞內最昂貴的代謝途徑之一,因此受到嚴格調控,其中色氨酸操縱子發揮着關鍵作用。調控作用主要有三種方式:阻遏作用、弱化作用以及終產物Trp 對合成酶的反饋抑制作用。

阻遏作用

trp操縱子轉錄起始的調控是通過阻遏蛋白實現的。產生阻遏蛋白的基因是trpR,該基因距trp operon基因簇很遠。它結合於trp 操縱基因特異序列,阻止轉錄起始。但阻遏蛋白的DNA結合活性受Trp調控,Trp起着一個效應分子的作用,Trp與之結合的動力學常數為1~2 ×10- 5mol·L-1。在有高濃度Trp存在時,阻遏蛋白- 色氨酸複合物形成一個同源二聚體,並且與色氨酸操縱子緊密結合,因此可以阻止轉錄。阻遏蛋白-色氨酸複合物與基因特異位點結合的能力很強,動力學常數為2 ×10- 10mol·L-1,因此細胞內阻遏蛋白數量僅有20~30分子已可充分發揮作用。當Trp 水平低時,阻遏蛋白以一種非活性形式存在,不能結合DNA。在這樣的條件下,trp操縱子被RNA聚合酶轉錄,同時Trp 生物合成途徑被激活。

弱化作用

trp操縱子轉錄終止的調控是通過弱化作用(attenuation)實現的。在大腸桿菌trp operon,前導區的鹼基序列包括4個分別以1、2、3和4表示的片段,能以兩種不同的方式進行鹼基配對,1 - 2和3 -4配對,或2 - 3配對,3 - 4配對區正好位於終止密碼子的識別區。前導序列有相鄰的兩個色氨酸密碼子,當培養基中Trp 濃度很低時,負載有Trp 的tRNATrp也就少,這樣翻譯通過兩個相鄰色氨酸密碼子的速度就會很慢,當4區被轉錄完成時,核糖體滯留1區,這時的前導區結構是2 - 3配對,不形成3 - 4配對的終止結構,所以轉錄可繼續進行。反之,核糖體可順利通過兩個相鄰的色氨酸密碼子,在4區被轉錄之前,核糖體就到達2區,這樣使2 - 3不能配對,3 - 4 區可以配對形成終止子結構,轉錄停止。

枯草桿菌的弱化作用機制另有特點。因其色氨酸操縱子結構的特殊性,轉錄起始的調節似乎不如轉錄終止的調節更具重要性。枯草桿菌色氨酸操縱子表達主要受到色氨酸激活RNA結合蛋白(Trp -activated RNA - binding p rotein,TRAP)的調節。該蛋白與色氨酸結合被激活後,可與trpE上游轉錄產物結合,導致轉錄終止。當色氨酸濃度較低時,TRAP失活,轉錄可以繼續,結構基因得以表達。另外枯草桿菌對未負荷色氨酸的tRNATrp也很敏感,後者大量堆積,會誘導合成抗TRAP 蛋白(anti -PRAP,AT)。AT與Trp激活的PRAP結合,可以取消其轉錄終止活性。trpG表達也受PRAP調控,活化的TRAP與和trpG相重疊的S - D 序列結合,阻礙核糖體的結合,抑制trpG轉錄。

反饋抑制作用

由於基因表達必然消耗一定的能源和前體物,相對於阻遏和弱化作用,反饋抑制作用更為經濟和高效。終產物Trp對催化分支途徑幾步反應的酶具有反饋抑制作用,其50%抑制濃度分別為:鄰氨基苯甲酸合酶,0. 0015 mmol·L - 1 ;鄰氨基苯甲酸磷酸核糖轉移酶,0.15 mmol·L-1;色氨酸合成酶,7.7mmol·L-1。對於普通野生菌株,鄰氨基苯甲酸合酶對Trp合成起到關鍵調控作用,常被稱為瓶頸酶;但對高產Trp工程菌而言,上述任何一種酶的反饋抑制都會直接影響Trp產量。研究發現酶蛋白某些特殊位點突變可以導致對反饋抑制作用敏感性顯著下降,如鄰氨基苯甲酸合酶38位的絲氨酸被精氨酸取代,抗反饋抑制能力顯著提高,當環境中Trp濃度為10 mmol·L-1時酶活性不受影響,而相同條件下野生型酶活性不到1%。鄰氨基苯甲酸磷酸核糖轉移酶162位纈氨酸被穀氨酸取代,抗反饋抑制能力也有顯著提高,當環境中含有0.83 mmol·L-1色氨酸或0.32 mmol·L-1 5 - 甲基-色氨酸時,酶活性分別為野生菌的3.6倍和2.4倍。陳小芳等報道一株穀氨酸棒桿菌鄰氨基苯甲酸合酶基因7個鹼基突變導致6個氨基酸殘基改變,抗反饋抑制能力顯著增強,環境中Trp濃度達到15 mmol·L-1時,鄰氨基苯甲酸合酶活性幾乎沒有變化。

參考文獻