開啟主選單

求真百科

諾特定理理論物理的中心結果之一,它表達了連續對稱性和守恆定律的一一對應。例如,物理定律不隨着時間而改變,這表示它們有關於時間的某種對稱性。舉例來說,若現實中重力的強度每天都有所改變,就會違反能量守恆定律,因為觀察者可以在重力弱的那天把重物舉起,然後在重力強的時候放下來,這樣就得到了比一開始輸入的能量更多的能量。

諾特定理對於所有基於作用量原理的物理定律是成立的。它得名於20世紀初的數學家埃米·諾特。諾特定理和量子力學深刻相關,因為它僅用經典力學的原理就可以認出和海森堡測不準原理[1]相關的物理量(譬如位置和動量)。

目錄

應用

諾特定理的應用幫助物理學家在物理的任何一般理論中通過分析各種使得所涉及的定律的形式保持不變的變換而獲得深刻的洞察力。例如:

  • 對於物理系統對於空間平移的不變性(換言之,物理定律不隨着空間中的位置而變化)給出了動量的守恆律;
  • 對於轉動的不變性給出了角動量的守恆律;
  • 對於時間平移的不變性給出了著名的能量守恆定律[2]

在量子場論中,和諾特定理相似,沃德-高橋恆等式(Ward-Takahashi)產生出更多的守恆定律,例如從電勢和向量勢的規範不變性得出電荷的守恆。

諾特荷也被用於計算靜態黑洞的熵1。

證明的一般化

這個推理可以應用到任何求導過程Q,不只是對稱性求導,也可以是更一般的泛函微分作用,包括拉格朗日量依賴於場的更高階的導數以及非局部作用量的情況。令ε為任意時空(或時間)流形的光滑函數,滿足其支撐的閉包和邊界不交。ε是一個測試函數。則根據變分原理(附帶說一下,它不適用於邊界),由q[ε][φ(x)]=ε(x)Q[φ(x)]生成的求導分布q滿足q[ε][S]=0對於任何在殼的ε成立,或者可以簡寫為q(x)[S]對於所有不在邊界上的x(注意q(x)是求導分布的簡寫,通常不是用x參數化的求導)。這就是諾特定理的一般化。

視頻

諾特定理 相關視頻

諾特定理(英文解說)

參考文獻