打开主菜单

求真百科

调幅

来自 呢图网 的图片

中文名;调幅

外文名;Amplitude Modulation

范 围;在530---1600KHz

解 释;通常说的中波

使载波的振幅按照所需传送信号的变化规律而变化,但频率保持不变的调制方法。调幅在有线电或无线电通信和广播中应用甚广。

调幅使高频载波的振幅随信号改变的调制(AM)。其中,载波信号的振幅随着调制信号的某种特征的变换而变化。例如,0或1分别对应于无载波或有载波输出,电视的图像信号使用调幅。调频的抗干扰能力强,失真小,但服务半径小。[1]

目录

简介

调幅(Amplitude Modulation,AM)。调幅也就是通常说的中波,范围在530---1600KHz。调幅是用声音的高低变为幅度的变化的电信号。传输距离较远,但受天气因素影响较大,适合省际电台的广播。早期VHF频段的移动通信电台大都采用调幅方式,由于信道衰落会使模拟调幅产生附加调幅,造成失真,在传输的过程中也很容易被窃听,目前已很少采用。目前在简单通信设备中还有采用,如收音机中的AM波段就是调幅波,音质和FM波段调频波相比较差。

分类

振幅调制可分为普通调幅(AM),双边带调幅(DSB-AM),单边带调幅(SSB-AM)与残留边带调幅(VSB-AM)几种不同方式。

双边带调幅

双边带调幅信号中仅包含两个边频,无载波分量,其频带宽度仍为调制信号频率的2倍。

单边带调幅

单边带调幅信号中仅包含一个边频。

残留边带调幅

残留边带调幅是指信号发送信号中包括一个完整边带、载波及另一个边带的小部分的调幅方法。

普通调幅信号的波形及表达式

设载波uc(t)的表达式和调制信号uΩ(t)的表达式分别为:

根据调幅的定义,当载波的振幅值随调制信号的大小作线性变化时,即为调幅信号,则已调波的波形如上图(c)所示,图(a)、(b)则分别为调制信号和载波的波形。由图可见,已调幅波振幅变化的包络形状与调制信号的变化规律相同,而其包络内的高频振荡频率仍与载波频率相同,表明已调幅波实际上是一个高频信号。可见,调幅过程只是改变载波的振幅,使载波振幅与调制信号成线性关系,即使Ucm变为Ucm+KaUΩmcosΩt,据此,可以写出已调幅波表达式为:

Ma称为调幅系数,Umax表示调幅波包络的最大值,Umin表示调幅波包络的最小值。Ma表明载波振幅受调制控制的程度,一般要求0≤Ma≤1,以便调幅波的包络能正确地表现出调制信号的变化。Ma>1的情况称为过调制, 下图所示为不同Ma时的已调波波形。

为了分析调幅信号所包含的频率成分,可将式(4-3)按三角函数公式展开,得

可见,在已调波中包含三个频率成分:ωc、ωc+Ω和ωc-Ω。ωc+Ω称为上边频,ωc-Ω称为下边频。由此而得到调幅波的频谱如下图所示。

由调幅波的频谱可得,调幅波的频带宽度为 BW=2F,式中,F为调制频率。

(1)若调制信号为复杂的多频信号,则其频谱如下图所示。

例如语音信号的频率范围为300~3400Hz,则语音信号的调幅波带宽为2× 3400=6800Hz。观察调幅波的频谱发现,无论是单音频调制信号还是复杂的调制信号,其调制过程均为频谱的线性搬移过程,即将调制信号的频谱不失真地搬移到载频的两旁。因此,调幅称为线性调制。调幅电路则属于频谱的线性搬移电路

(2)若调制信号为单频余弦信号,负载电阻为RL,则已调波的功率主要有以下几种。

1.载波功率

2.上、下边频功率

3.总平均功率

4.最大瞬时功率

普通调幅信号的产生可将调制信号与直流相加,再与载波信号相乘,即可实现普通调幅。可采用低电平调幅方法和高电平调幅方法。

解调方法

(1)包络检波

利用普通调幅信号的包络反映调制信号波形变化这一特点,如能包络提取出来,就可以恢复原来的调制信号。

(2)同步检波

同步检波必须采用一个与发射端载波同频率同相的信号,这个信号称为同步信号。

注意:双边带调幅、单边带调幅和残留边带调幅只能采用同步检波。

调幅电路

调幅电路原理主要分为两类:高电平调幅电路和低电平调幅电路,具体如下:

高电平调幅

高电平调幅要求电路的输出功率足够大。电路在调幅的同时,还进行功率放大。调制过程通常是在丙类放大级进行的。根据调制信号控制的电极不同,调制方法主要有集电极调幅、基极调幅、发射极调幅。

1、集电极调幅

(1)集电极调幅电路的特点是:

低频调制信号加到集电极回路,B1、B2为高频变压器;B3为低频变压器。低频调制信号uΩ(t)与丙类放大器的直流电源相串联,因此放大器的有效集电极电源电压Vcc(t)等于两个电压之和,它随调制信号变化而变化。图中的电容Cb、C`是高频旁路电容,C`的作用是避免高频电流通过调制变压器B3的次级线圈以及直流电源,因此它对高频相当于短路,而对调制信号频率应相当于开路.

对于丙类高频功率故大器,当基极偏置Vbb、高频激励信号电压振幅Ubm和集电极回路阻抗Rp不变,只改变集电极有效电源电压时,集电极电流脉冲在欠压区可认为不变。而在过压区,集电极电流脉冲幅度将随集电极有效电源电压的变化而变。因此,集电极调幅必须工作于过压区。

(2)集电极调幅只能产生普通调幅波。

优点是:调幅线性比基极调幅好。此外,由于集电极调幅 始终工作在临界和弱过压区,故效率比较高。

缺点是:调制信号接在集电极回路中供给的功率比较大。

2、基极调幅

基极调幅电路的特点是调制信号加在基极回路。图中C1、C3为高频旁路电容;C2为低频旁路电容;B1为高频变压器;B2为低频变压器;LC回路为带通滤波器。应保证回路调谐于ωC,通带为2Ω。

基极调幅的原理是利用丙类功率放大器在电源电压Vcc、输入信号振幅Ubm、谐振电阻Rp不变的条件下,在欠压区改变Vbb,其输出电流随Vbb接近线性变化这一特性来实现调幅的。

基极调幅的优点是:由于调制信号接在基极回路,对于调制信号只需很小的功率

缺点是:效率较低,调制线性不如集电极调幅。

低电平调幅电路

(1) 模拟乘法器调幅电路

作用:实现两个模拟信号相乘

符号:

电路图:

(2)二极管调制电路

二极管调制电路包括单二极管调制电路、二极管平衡电路、二极管双平衡调制电路等。

1)单二极管电路

二极管电路如下图所示。

当二极管两端的电压UD大于二极管的导通电压时,二极管导通,流过二极管的电流与加在两端的电压成正比;当二极管两端的电压UD小于二极管的导通电压时,二极管截止,电流为0;二极管等效为一个受控开关。控制电压为二极管两端电压UD。

当Ucm>>UΩm且Ucm为大信号(>0.5V)时,可进一步认为二极管的通断主要由Uc控制。一般情况下二极管的开启电压UP较小,有Ucm>>UP,可令UP近似为0或在电路中加一固定偏置电压来抵消UP。忽略输出电压的反作用,用开关函数分析法则可得到

可得到相应的频谱图如下:

将它通过以ωc为中心、通频带2Ω为的带通滤波器后,可得到调幅波。

这里的分析忽略了输出电压的反作用。是因为输出电压的相对于Uc而言很小。若考虑反作用,输出电压对二极管两端的电压影响不大,频率分量不会变化,可能使输出信号幅度降低(rDàrD+RL)。

另外,如果不满足大信号条件,不能用开关函数分析法或线性时变分析法,但可用幂级数分析法,可以知道该电路仍然可以完成频谱的线性搬移功能。

2)二极管平衡调制器

在单二极管电路中,由于工作在线性时变工作状态,因而二极管产生的频率分量大大减少了,但在产生的频率分量中,仍然有不少不必要的频率分量,因此有必要进一步减少一些频率分量。

二极管平衡电路可以满足这一要求。其原理电路如下图。

该电路由两个性能一致的二极管及中心抽头变压器Tr1、Tr2接成平衡电路。电路上下两部分完全一样。控制信号(载波信号)加在两个变压器的中心抽头处,输入信号(调制信号)接在输入变压器,即载波信号同相加到D1、D2上;调制信号u2反相加到D1、D2上输出变压器接滤波器,用以滤除无用的频率分量。从Tr2次向右看的负载电阻为RL。则该电路可等效成如下的原理电路形式。

参考来源

第58集 第四章 调幅AM(4)03

参考资料

  1. 调幅,360文库 , 2020年7月9日