開啟主選單

求真百科

變更

约翰·缪勒

增加 429 位元組, 4 年前
無編輯摘要
}}
'''约翰·缪勒'''(Johannes Müller)[[德国数学家]],[[天文学家]]。1436年6月6日生于[[柯尼斯堡]](今属 巴伐利亚,并非东 普鲁士的哥尼斯堡和今天的 加里宁格勒),1476年7月6日卒于[[罗马]]。原名约翰·缪勒。早年就学于 [[莱比锡大学]]。1452年到 维也纳在G.von波伊尔巴赫教授的指导下学习天文学和数学,并协助波伊尔巴赫翻译、校对托勒密的著作。1462年以后到罗马等地收集和研究希腊 数学手稿。1671年定居纽伦堡,在B.瓦尔特的资助下,翻译、注释并出版了托勒密、阿波罗尼奥斯、阿基米德和海伦等希腊数学家的著作。这些工作对欧洲数学的发展起了重要的推动作用。 <ref>[http://www.gerenjianli.com/Mingren/05/ie92r1eck7lr5c4.html  约翰·缪勒]来源名人简历网</ref>
==基本资料==
=='''生活经历'''==
<p style="text-indent:2em;">J.缪勒(Johannes Müller),关于他的早期生活人们知道的不多,他12岁以前在家中受教育,然后去莱比锡学习.1450年4月14日在维也纳大学注册,开始跟随G.波伊巴赫(Peuerbach)学习天文学。雷格蒙塔努斯于1452年1月16日获得学士学位,这时他才15岁.但由于该大学的规章制度,他直到21岁才得到硕士学位.1457年11月11日,他受聘为维也纳大学教员,从而成为波伊巴赫的学生和同事.在雷格蒙塔努斯的一生中,波伊巴赫对他的影响最大.波伊巴赫曾在意大利讲授数学,之后定居维也纳并使该大学成为当时欧洲数学的中心之一.<ref>[http:/p/www.gerenjianli.com/Mingren/05/ie92r1eck7lr5c4.html  约翰·缪勒]来源名人简历网</ref>
<p style="text-indent:2em;">他写过一本算术书和许多天文学著作,其中大部分直到他去世后才出版.是波伊巴赫最先认识到年轻的雷格蒙塔努斯的天才,他非常欣赏雷格蒙塔努斯对天文学的热爱,并极其认真地教育他.雷格蒙塔努斯从行星理论学起,逐渐掌握了托勒密(Ptolemy)的天文学说.他还试图掌握一切对天文学有用的知识,努力钻研几何学、算术与三角学,为他以后的发展打下了基础.与波伊巴赫的友谊使雷格蒙塔努斯终生受益.</p>
<p style="text-indent:2em;">1460年5月5日,神圣罗马教皇的使节C.贝萨里翁(Bessa-rion)到达维也纳,经过波伊巴赫的介绍,他成为第二个对雷格蒙塔努斯的一生产生重要影响的人物.贝萨里翁不仅是教皇的一位成功的外交家,而且也是一位有造诣的学者,尤其在天文学方面.他的母语是希腊语,又精通拉丁文,他热衷于向使用拉丁文的西方知识界介绍古希腊经典作家的著作,力劝波伊巴赫将托勒密的《天文学大成》 (Almagest)缩写成拉丁文出版,使之“更简明易懂”,因为托勒密原著的语言晦涩,思想深奥.</p>
<p style="text-indent:2em;">古埃及人也可能早已发现三角形的不同元素之间具有某种关联.希腊人对天文学和几何学的研究促进了三角学的发展,他们首先认识到有必要建立三角形的边与角之间的精确关系.希帕霍斯(Hipparchus)曾为了天文观测的需要作出一个弦表,门纳劳斯(Menelaus)则给出了三角形的一个基本定理.之后,托勒密在其巨著《天文学大成》中发展了弦表,这些弦表在欧洲一直被广泛采用,直到雷格蒙塔努斯的著作发表之前没有多大改变.</p>
<p style="text-indent:2em;">三角学的下一步发展是在东方,印度人和阿拉伯人都为之做出了贡献.印度人考虑半弦和圆的半径,这样他们就发现了现代三角学赖以存在的基础.阿拉伯人艾布瓦法(Abul Wefa)首次引入正割和余割;巴塔尼(al-Battānī)为测定太阳的仰角而提出的概念“直阴影”和“反阴影”后来发展成了“余切”和“正切”;</p>
<p style="text-indent:2em;">纳西尔丁(Nasīr ad-Din)则指出了平面三角学与球面三角学的差异,开始使三角学脱离天文学.雷格蒙塔努斯在写作《论各种三角形》时,知晓托勒密以及一些印度、阿拉伯数学家的工作.由于他不懂阿拉伯语,他只能阅读已译成拉丁文的一部分著作.他从前人的工作中知道了弦表、正弦律以及余弦律等,从而建立起三角学的统一基础,使之成为一个系统的整体.<ref>[http:/p/www.gerenjianli.com/Mingren/05/ie92r1eck7lr5c4.html  约翰·缪勒]来源名人简历网</ref>
=='''贡献意义'''==
<p style="text-indent:2em;">雷格蒙塔努斯编制了许多天文表.他的《方位表》中包括天体黄经的计算,该表于1490年初版,以后多次再版.在问题10中,他指出应该通过使sin90°等于105而不是6×105(在《论各种三角形》第5卷定理25中使用了这一底数)来摒弃正弦表的60进制特征.在《论各种三角形》中他没有使用正切函数,但在《方位表》中使用了间隔1°直到90°的正切表.他取tg45°=105,是我们现今这类表的典范.</p>
<p style="text-indent:2em;">1468年,雷格蒙塔努斯在布达佩斯编制了一个正弦表,取sin90°=107.在他认识到10进制的长处之前,他已经准备了一个60进制的正弦表,取sin90°=6×106.这两个表都于1541年初版于纽伦堡,同时出版的还有他的论文《正弦表的制作》(Construction of sine).此外,他还在匈牙利完成一张关于天空每日视旋转的表,并且阐述了它的几何基础.</p>
<p style="text-indent:2em;">雷格蒙塔努斯自己出版了一些科学著作,包括他的《星历表》 (Ephemerides)和波伊巴赫的《行星新论》(New theory of theplanets).《星历表》给出了1475—1506年间每天的天体位置,有趣的是,C.哥伦布(Colombo)在第四次航海探险时随身携带了一份《星历表》,并利用它预示的1504年2月29日的月食吓唬牙买加的土著印第安人,终于使他们屈服. 雷格蒙塔努斯的《论各种三角形》是欧洲第一部独立於天文学的三角学著作。书中对平面三角和球面三角进行了系统的阐述,还有很精密的三角函数表。哥白尼的学生雷蒂库斯在重新定义三角函数的基础上,制作了更多精密的三角函数表。<ref>[http:/p/www.gerenjianli.com/Mingren/05/ie92r1eck7lr5c4.html  约翰·缪勒]来源名人简历网</ref>
==参考资料==
{{reflist}}
2,222
次編輯