付博查看源代码讨论查看历史
|
付博,男,北京航空航天大学教授。
人物简历
2015年于清华大学精密仪器系获博士学位,期间获国家留学基金委资助,赴芬兰阿尔托大学联合培养一年。博士毕业后,于英国剑桥大学工程系从事博士后研究。2018年入职北京航空航天大学,
研究方向
1. 超快脉冲光纤激光器及应用(探测、成像、传感),激光吸收光谱、超连续谱、光学频率梳等
2. 石墨烯、碳纳米管、金属纳米颗粒、MXenes、异质结构等低维微纳米材料在超快光子学中的应用
3. 医用激光光子学、激光消融等医工交叉方向
科研项目
国家自然科学基金国际(地区)合作与交流“中欧人才项目”:高功率时空锁模激光器及其在光频梳吸收光谱中的应用
国家自然科学基金面上项目:基于双光梳吸收光谱的温度场和燃气组分浓度分布的重建及测量方法研究
北京市自然科学基金面上项目:基于掺铥石墨烯锁模光纤激光器的中红外超连续谱的产生
北航青年拔尖人才支持计划:基于超快脉冲光纤激光器的光频梳及其在吸收光谱测量方面的应用;基于石墨烯掺铥锁模光纤激光器的中红外光频梳;高功率波长可调超快脉冲光纤激光器及其在超连续谱和光频梳中的应用;高功率时空锁模光纤激光器及应用
北航“医工百人”项目:超快脉冲激光器及应用
信息光子学与光通信国家重点实验室开放课题基金:基于低维纳米材料的高功率超快脉冲光纤激光器及应用
国家重点研发计划“制造基础技术与关键部件”重点专项子课题:基于语义交互集成的仪器仪表新型体系架构及关键技术(参与)
中英合作牛顿高级学者基金:基于吸收光谱层析成像的燃烧不稳定性检测方法与技术研究(参与)
国家自然科学基金面上项目:片上跨倍频程克尔光频梳与时域腔孤子特性的研究(参与)
国家自然科学基金面上项目:基于掺铥锁模光纤激光器的中红外光频梳(参与)
国家自然科学基金面上项目:梳齿间距可调的光纤四波混频光频梳(参与)
获奖情况
中国仪器仪表学会科技进步二等奖,清华大学“优秀博士学位论文”、“学术新秀”,入选清华大学“优秀博士学位论文丛书”,“NSK机械工学优秀论文”,“冯如杯”优秀指导教师,北航学院优秀导师,北航仪器光电学院学科建设贡献奖、国际合作交流工作贡献奖、优秀科技实践指导教师、先进基层教师、北京市优秀本科毕业设计指导教师等。任全国光电测量标准化技术委员会委员,中国激光杂志社青年编委,国家自然科学基金委、国家公派访问学者/留学基金委、教育部学位中心评审专家,IEEE Senior Member,国际期刊“Photonics”客座主编,“Frontiers in Sensors”编辑,“Military Medical Research”科学编辑,“Brain-X”特邀编辑,“Frontiers of Physics”青年编委,“Instrumentation”青年编委,光学学报青年编委,北航高等理工学院(沈元荣誉学院)学生学业荣誉导师、北航学院导师,多次国际会议特邀报告,并担任分会主席。迄今为止,发表Advanced Functional Materials(卷首封面)、Small(封底,ESI高被引论文)、Advanced Optical Materials(内封面)、Laser & Photonics Reviews(封底)等论著70余篇,申请发明专利20余项。
学术成果
著作
付博,“基于石墨烯可饱和吸收体的锁模光纤激光器”,清华大学优秀博士学位论文丛书(ISBN: 9787302515081),清华大学出版社 (2018).
论文
1. J. Sun, H. Cheng, L. Xu, B. Fu (corresponding author), X. Liu, and H. Zhang, “Ag/MXene composite as broadband nonlinear modulator for ultrafast photonics,” ACS Photonics, accepted
2. C. Zhang, C. Zhang, Y. Li, Y. Shi, J. Chao, Y. Zhao, H. Yang, and B. Fu (corresponding author), “Wavelength-tunable broadband lasers based on nanomaterials,” Nanotechnology, accepted
3. C. Zhang, T. Wu, S. He, C. Zhang, and B. Fu (corresponding author), “Multiplexed dual combs in a bidirectional nanotube-mode-locked fiber laser,” Optics and Laser Technology, DOI: 10.1016/j.optlastec.2023.109865
4. G. Wang, H. Qin, J. Liu, H. Ouyang, X. Wang, and B. Fu (corresponding author), “Spatiotemporal dissipative soliton resonances in multimode fiber lasers,” Chaos, Solitons and Fractals, 174, 113865 (2023).
5. C. Zhang, G. Wang, L. Xu, and, B. Fu (corresponding author), “Polarization-multiplexed single-cavity dual combs and application in absorption spectroscopy,” Sensors and Actuators A-Physical, 360, 114554 (2023).
6. W. Lyu, J. An, Y. Lin, P. Qiu, G. Wang, J. Chao, and, B. Fu (corresponding author), “Fabrication and applications of heterostructure materials for broadband ultrafast photonics,” Advanced Optical Materials, 11, 2300124 (2023).
7. J. Guo, C. Shang, S, Gao, Y. Zhang, B. Fu (corresponding author), and L. Xu, “Flexible plasmonic optical tactile sensor for health monitoring and artificial haptic perception,” Advanced Materials Technologies, 8, 2201506 (2023).
8. C. Zhang, F. Qu, P. Ou, H. Sun, S. He, and B. Fu (corresponding author), “Recent Advances and Outlook in Single-Cavity Dual Comb Lasers,” Photonics 10, 221 (2023).
9. X. Zhao, H. Jin, J. Liu, J. Chao, T. Liu, H. Zhang, G. Wang, W. Lyu, S. Wageh, O. A. Al-Hartomy, A. G. Al-Sehemi, B. Fu (corresponding author), and H. Zhang, “Integration and applications of nanomaterials for ultrafast photonics,” Laser & Photonics Reviews, 16, 2200386 (2022). 封底论文
10. G. Wang, T. Liu, J. Chao, H. Jin, J. Liu, H. Zhang, W. Lyu, P. Yin, A. Al-Ghamdi, S. Wageh, B. Fu (corresponding author), and H. Zhang, “Recent advances and challenges in ultrafast photonics enabled by metal nanomaterials,” Advanced Optical Materials, 10, 2200443 (2022). 内封面论文
11. B. Fu, C. Zhang, W. Lyu, J. Sun, C. Shang, Y. Cheng, and L. Xu, “Recent Progress on Laser Absorption Spectroscopy for Determination of Gaseous Chemical Species,” Applied Spectroscopy Reviews, 57, 112 (2022).
12. J. Li, C. Shang, Y. Rong, J. Sun, Y. Cheng, B. He, Z. Wang, M. Li, J. Ma, B. Fu (corresponding author), and X. Ji,“Review on Laser Technology in Intravascular Imaging and Treatment,” Aging and Disease, 13, 246 (2022).
13. C. Wang, B. Chang, T. Tan, C. Qin, Z. Wu, G. Yan, B. Fu, Y. Wu, Y. Rao, H. Xia, and B. Yao, “High energy and low noise soliton fiber laser comb based on nonlinear merging of Kelly sidebands,” Optics Express, 30, 23556 (2022).
14. B. Fu, Y. Cheng, C. Shang, J. Li, G. Wang, C. Zhang, J. Sun, J. Ma, X. Ji, and B. He, “Optical ultrasound sensors for photoacoustic imaging: a narrative review,” Quantitative Imaging in Medicine and Surgery, 12, 1608 (2022).
15. C. Shang, Y. Zhang, G. Wang, J. Sun, Y. Cheng, Y. Zhang, B. Yao, B. Fu (corresponding author), and J. Li, “Nonlinear Optical Properties of MXene and Applications in Broadband Ultrafast Photonics,” Journal of Alloys and Compounds, 918, 165580 (2022).
16. W. Lyu, Y. Cheng, J. An, M. Condorelli, M. Pulvirenti, G. Compagnini, X. Wang, B. Fu (corresponding author), and V Scardaci, “Silver Nanoplate Composites as Nonlinear Saturable Absorbers for a Q-Switched Laser,” Photonics, 9, 835 (2022).
17. 付博, 赵小丽, 张晗, 徐立军, “激光技术在血栓消融中的应用与进展,” 中国激光, 49, 1907001 (2022). 特邀论文
18. B. Fu, J. Sun, Y. Cheng, H. Ouyang, G. Compagnini, P. Yin, S. Wei, S. Li, D. Li, V. Scardaci, and H. Zhang, “Recent progress on metal-based nanomaterials: fabrications, optical properties, and applications in ultrafast photonics,” Advanced Functional Materials, 31, 2107363 (2021). 卷首封面论文
19. B. Fu, J. Sun, C. Wang, C. Shang, L. Xu, J. Li, and H. Zhang “MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics,” Small, 17, 2006054 (2021). 封底论文,ESI高被引论文
20. Y. Cheng, W. Lyu, Z. Wang, H. Ouyang, A. Zhang, J. Sun, T. Yang, B. Fu (corresponding author), and B. He, “MXenes: synthesis, incorporation, and applications in ultrafast lasers,” Nanotechnology, 32, 392003 (2021).
21. A. Zhang, Z. Wang, H. Ouyang, W. Lyu, J. Sun, Y. Cheng, and B. Fu (corresponding author), “Recent Progress of Two-Dimensional Materials for Ultrafast Photonics,” Nanomaterials, 11, 1778 (2021).
22. B. Fu, C. Zhang, P. Wang, M. Condorelli, M. Pulvirenti, E. Fazio, C. Shang, J. Li, Y. Li, G. Compagnini, and V. Scardaci, “Nonlinear Optical Properties of Ag Nanoplates Plasmon Resonance and Applications in Ultrafast Photonics,” Journal of Lightwave Technology, 39, 2084 (2021).
23. G. Wang, Y. Ma, C. Shang, H. Huang, Z. Lu, S, Wang, J, Sun, C. Zhang, and B. Fu (corresponding author), “Influence of Reverse Saturable Absorption Effect on Conventional and Dissipative Solitons Fiber Lasers,” Optics and Laser Technology, 137, 106805 (2021).
24. B. Fu, P. Wang, Y. Li, M. Condorelli, E. Fazio, J. Sun, L. Xu, V. Scardaci, and G. Compagnini, “Passively Q-switched Yb-doped all-fiber laser based on Ag nanoplates as saturable absorber,” Nanophotonics, 9, 3873 (2020).
25. B. Fu, J. Sun, G. Wang, C. Shang, Y. Ma, J. Ma, L. Xu, and V. Scardaci, “Solution-processed two-dimensional materials for ultrafast fiber lasers (invited),” Nanophotonics, 9, 2169 (2020). 特邀综述,被二维材料前沿特别报道
26. X. Ma, B. Liu, Y. Cai, D. Jia, B. Fu, L. Xu, J. Ma, “Suppression of Reverberations at Fiber Tips for Optical Ultrasound Sensing,” Optics Letters, 45, 2526 (2020).
27. C. Shang, Y. Zhang, H. Qin, B. He, C. Zhang, J. Sun, J. Li, J. Ma, X. Ji, L. Xu, and B. Fu (corresponding author), “Review on wavelength-tunable pulsed fiber lasers based on 2D materials,” Optics and Laser Technology, 131, 106375 (2020).
28. Y. Wang, W. Zhua, Y. Deng, B. Fu, P. Zhu, Y. Yu, J. Li, and J. Guo, “Self-Powered Wearable Pressure Sensing System for Continuous Healthcare Monitoring Enabled by Flexible Thin-Film Thermoelectric Generator,” Nano Energy, 73, 104773 (2020).
29. L. Chang, Z. Cao, B. Fu, Y. Lin, and L. Xu, “Lean blowout detection for bluff-body stabilized flame,” Fuel, 266, 117008 (2020).
30. B. Fu, J. Li, Z. Cao, and D. Popa, “Bound states of solitons in a harmonic graphene-mode-locked fiber laser,” Photonics Research, 7, 116 (2019).
31. X. Ma, Q. Cai, B. Fu, L. Xu, J. Ma, “Fiber optic-based Laser Interferometry Array for Three Dimensional Ultrasound Sensing,” Optics Letters, 44, 5852 (2019).
32. B. Fu, “Nanotubes polymer for ultrafast photonics,” 16th Pacific Polymer Conference, Singapore (2019).
33. S. Gao, Y. Shi, Q. Liu, L. Xu, B. Fu, and Z. Yang, “4-Dimensional Sensing in Interactive Displays Enabled by Both Capacitive and Piezoelectric Based Touch Panel,” IEEE Access, 7, 33787 (2019).
34. B. Fu, “Soliton Molecules in a Tunable Tm-doped Fiber Laser,” International Conference on Optical and Photonic Engineering, Phuket, Thailand (2019).
35. J. Li, B. Fu (corresponding author), and Z. Liu, “Panchromatic image compression based on improved post-transform for space optical remote sensors,” Signal Processing, 159, 72 (2019).
36. B. Fu, J. Li, Z. Cao, and D. Popa, “Bound States in a Harmonic Graphene-Mode-Locked Fiber Laser,” Conference on Lasers and Electro-Optics (CLEO/OSA), San Jose, California, USA (2019).
37. B. Fu, “Soliton molecules in a graphene harmonic mode-locked fiber laser,” 26th Assembly of Advanced Materials Congress, Stockholm, Sweden (2019).
38. B. Fu, D. Popa, Z. Zhao, S. A. Hussain, E. Flahaut, T. Hasan, G. Soavi, and A. C. Ferrari, “Wavelength tunable soliton rains in a nanotube-mode locked Tm-doped fiber laser,” Applied Physics Letters, 113, 193102 (2018).
39. B. Fu, S. A. Hussain, G. Soavi, B. Yao, D. Popa, and A. C. Ferrari, “Broadband Wavelength Tunable Mode-Locked Tm-Doped Fiber Laser Based on Carbon Nanotubes,” Conference on Lasers and Electro-Optics (CLEO/OSA), San Jose, California, USA, JTh2A.179 (2018).
40. Z. Fan, S. li, B. Fu, B. Wang, and W. Zhang, “Influence of inner-arc curvature and cladding rings on confinement loss in hypocycloid-shaped KAGOME hollow-core photonic crystal fiber,” Journal of Applied Physics, 123, 043110 (2018).
41. B. Yao, G. Soavi, T. Ma, X. Zhang, B. Fu, D. Yoon, S. A. Hussain, A. Lambardo, D. Popa, and A. C. Ferrari, “Gate controllable ultrafast fiber lasers based on graphene,” Conference on Lasers and Electro-Optics (CLEO/OSA), San Jose, California, USA, SF3K.6 (2018).
42. B. Fu, D. Popa, S. A. Hussain, and A. C. Ferrari, “Multiwavelength Tunable Tm-Doped Fiber Laser Based on Nanotubes,” The European Conference on Lasers and Electro-Optics (CLEO Europe), Munich, Germany (2017).
43. D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, G. Cerullo, and A. C. Ferrari, “Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,” Conference on Lasers and Electro-Optics (CLEO/OSA), San Jose, California, USA, JTu5A.2 (2017).
44. Z. Zhao, D. Popa, B. Fu, S. A. Hussain, and A. C. Ferrari, “Bound state operation of an all-polarization maintaining Er-doped fiber laser,” Conference on Lasers and Electro-Optics (CLEO/OSA), San Jose, California, USA, JW2A.4 (2017).
45. D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, T. Scopigno, G. Cerullo, and A. C. Ferrari, “Graphene synchronised all-fiber laser for coherent Raman spectroscopy,” The European Conference on Lasers and Electro-Optics (CLEO Europe), Munich, Germany (2017).
46. P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Optics Letters, 41, 2254 (2016).
47. H. Yang, B. Fu (co-first author), D. Li, Y. Tian, Y. Chen, M. Mattila, Z. Yong, R. Li, A. Hassanien, C. Yang, I. Tittonen, Z. Ren, J. Bai, Q. Li, E. I. Kauppinen, H. Lipsanen, and Z. Sun, “Broadband laser polarization control with aligned carbon nanotubes,” Nanoscale, 7, 11199 (2015).
48. B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5 and 2 µm,” IEEE Journal of Selected Topics in Quantum Electronics, 20, 1100705 (2014). ESI高被引论文(2017年检索)
49. B. Fu, H. Yang, Y. Chen, M. Mattila, Z. Yong, Q. Li, C. Yang, I. Tittonen, H. Lipsanen, and Z. Sun, “Broadband polarization dynamics control with aligned carbon nanotubes,” Nanocarbon Photonics and Optoelectronics, North Karelia, Finland (2014).
50. B. Fu, Y. Hua, X. Xiao, H. Yang, C. Yang, and Z. Sun, “Graphene based broadband untrafast fiber lasers at 1, 1.5 and 2 μm,” Optics & Photonics Days 2014, Turku, Finland (2014).
51. B. Fu, H. Yang, Y. Chen, M. Mattila, Z. Yong, Q. Li, C. Yang, I. Tittonen, H. Lipsanen, and Z. Sun, “Polarization dynamics control with aligned carbon nanotubes,” Optics & Photonics Days 2014, Turku, Finland (2014).
52. B. Fu, Y. Hua, X. Xiao, H. Yang, C. Yang, and Z. Sun, “Fabrication of graphene saturable absorber for ultra-broadband ultrafast fiber lasers,” Optical Nanospectroscopy I, Tübingen, Germany (2014).
53. B. Fu, H. Yang, Y. Chen, M. Mattila, Z. Yong, Q. Li, C. Yang, I. Tittonen, H. Lipsanen, and Z. Sun, “Fabrication of aligned carbon nanotube device and its application for polarization controlling,” Optical Nanospectroscopy I, Tübingen, Germany (2014).
54. B. Fu, L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Generation of 35-nJ nanosecond pulse from a passively mode-locked Tm, Ho-codoped fiber laser with graphene saturable absorber,” IEEE Photonics Technology Letters, 25, 1447 (2013).
55. B. Fu, L. Gui, W. Zhang, X. Xiao, H. Zhu, and C. Yang, “Passive harmonic mode-locking in erbium-doped fiber laser with graphene saturable absorber,” Optics Communications, 286, 304 (2013).
56. B. Fu, Y. Hua, X. Xiao, and C. Yang, “Graphene film for broadband mode-locked fiber lasers,” Asia Communications and Photonics Conference, Beijing, China, ATh3C.2 (2013).
57. X. Xiao, Y. Hua, B. Fu, and C. Yang, “Experimental investigation of the wavelength tunability in all-normal-dispersion ytterbium-doped mode-locked fiber lasers,” IEEE Photonics Journal, 5, 1502807 (2013).
58. B. Fu, W. Zhang, L. Gui, X. Xiao, H. Zhu, and C. Yang, “Generation of 32nd harmonic in passively mode-locked erbium-doped laser with graphene saturable absorber,” Conference on Lasers and Electro-Optics (CLEO/OSA), San Jose, California, USA, JW2A.70 (2012).
59. B. Fu, S. Li, Y. Yao, L. Zhang, and M. Zhang, “Improved high birefringence photonic crystal fibres with dispersion flattened and single mode operation,” Chinese Physics B, 20, 024209 (2011).
60. S. Li, L. Zhang, B. Fu, Y. Zheng, Y. Hang, and X. Zhao, “Wave breaking in tapered holey fibers,” Chinese Optics Letters, 9, 030601 (2011).
61. Y. Yao, S. Li, B. Fu, L. Zhang, and M. Zhang, “Numerical study on pulse trapping in birefringent photonic crystal fibers,” Optoelectronics Letters, 7, 0205 (2011).
62. 刘硕, 李曙光, 付博, 周洪松, 冯荣普, “中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究,” 物理学报, 60, 034217 (2011).
63. B. Fu, S. Li, Y. Yao, L. Zhang, and M. Zhang, “Design of two kinds of dual-core high birefringence and high coupling degree photonic crystal fibers,” Optics Communications, 283, 4064 (2010).
64. B. Fu, S. Li, Y. Yao, L. Zhang, and M. Zhang, “Supercontinuum generation with high birefringence SF6 soft glass photonic crystal fibers,” Chinese Physics Letters, 27, 074209 (2010).
65. H. Zhou, S. Li, B. Fu, Y. Yao, and L. Zhang, “A kind of double-cladding photonic crystal fiber with high birefringence and two zero-dispersion wavelengths,” Chinese Physics Letters, 27, 014208 (2010).
66. L. Zhang, S. Li, B. Fu, Y. Yao, M. Zhang, and G. Yin, “Investigation of wave breaking in the normal dispersion region of nano-structured photonic crystal fibers,” Optoelectronics Letters, 6, 0401 (2010).
67. M. Zhang, S. Li, Y. Yao, B. Fu, and L. Zhang, “A dark hollow beam from a selectively liquid-filled photonic crystal fibre,” Chinese Physics B, 19, 047103 (2010).
68. W. Ma, S. Li, G. Yin, B. Fu, and L. Zhang, “Study on pulse compression in tapered holey fibres,” Chinese Physics B, 19, 104208 (2010).
69. L. Zhang, S. Li, Y. Yao, B. Fu, and M. Zhang, “Properties of high birefringence chalcogenide glass holey fibre for mid-infrared transparency,” Journal of Optics, 12, 035207 (2010).
70. 姚艳艳, 李曙光, 付博, 张磊, 郑义, 侯蓝田, “光子晶体光纤中超连续谱的研究进展与应用,” 物理, 39, 682 (2010).
71. 张磊, 李曙光, 姚艳艳, 付博, 张美艳, 郑义, “高双折射纳米结构光子晶体光纤特性研究,” 物理学报, 59, 1101 (2010).
72. 张美艳, 李曙光, 姚艳艳, 张磊, 付博, 尹国冰, “微结构纤芯对光子晶体光纤基本特性的影响,” 物理学报, 59, 3278 (2010).
73. 马文文, 李曙光, 尹国冰, 冯荣普, 付博, “反常色散锥形微结构光纤中高效率脉冲压缩研究,” 物理学报, 59, 4720 (2010).
74. 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英, “双芯高双折射光子晶体光纤耦合特性研究,” 物理学报, 58, 7708 (2009).
专利
1. 付博,徐立军,刘会生,“宽带波长可调色散管理型全光纤超快脉冲激光器及系统”,已授权,授权公告日:2020.7.24,授权公告号:CN109378694B,专利号:ZL201811566553.8
2. 付博,何泊衢,徐立军,尚策,孙江涛,“一种用于太赫兹辐射产生的空间接入型液体池”,已授权,授权公告日:2021.1.15,授权公告号:CN110492338B,专利号:ZL201910854315.5
3. 付博,何泊衢,徐立军,尚策,孙江涛,“一种用于太赫兹辐射产生的光纤接入型液体池”,已授权,授权公告日:2021.1.15,授权公告号:CN110556689B,专利号:ZL201910853500.2
4. 付博,徐立军,张程宏,李静,陆哲睿,尚策,“一种空间接入型光频梳系统监测航空发动机燃烧场的方法”,已授权,授权公告日:2021.1.15,授权公告号:CN110657994B,专利号:ZL201910988905.7
5. 付博,徐立军,张程宏,王刚,黄浩璟,孙世杰,“一种空间接入型双光梳系统监测航空发动机燃烧场的方法”,已授权,授权公告日:2021.1.15,授权公告号:CN110657992B,专利号:ZL201910988327.7
6. 付博,徐立军,李静,张程宏,马宇轩,李端,“一种基于全光纤光频梳系统监测航空发动机燃烧场的方法”,已授权,授权公告日:2021.2.2,授权公告号:CN110657993B,专利号:ZL201910988885.3
7. 付博,何泊衢,尚策,孙婧轩,王钟徽,高硕,“一种基于光子晶体光纤的波长可调全光纤纳秒脉冲激光器及系统”,已授权,授权公告日:2021.2.2,授权公告号:CN110535016B,专利号:ZL201910920905.3
8. 付博,徐立军,尚策,曹章,张程宏,张宏宇,“一种基于双光梳全光纤系统监测航空发动机燃烧场的方法”,已授权,授权公告日:2021.3.12,授权公告号:CN110736623B,专利号:ZL201910988351.0
9. 付博,吉训明,李静,徐立军,程湲,张奡杰,王子皓,“一种偏心性内窥镜激光导管”,已授权,授权公告日:2022.5.17,授权公告号:CN112842523B,专利号:ZL202110107602.7
10. 付博,郭晶晶,徐立军,尚策,“一种基于金纳米复合材料光纤的反射式葡萄糖传感器及测量系统”,已授权,授权公告日:2022.10.11,授权公告号:CN113203712B,专利号:ZL202110489456.9
11. 付博,徐立军,张程宏,郭晶晶,程湲,孙婧轩,“一种腔衰荡双光梳光谱检测标志性呼吸气体浓度的方法”,已授权,授权公告日:2023.4.18,授权公告号:CN113376111B,专利号:ZL202110636720.7
12. 付博,徐立军,孙婧轩,朝家乐,金红,赵小丽,“基于多模光纤的全光纤可调谐时空锁模激光器及系统”,已公开,申请号:202210390661.4
13. 吉训明,付博,尚策,徐立军,李静,欧阳昊,吕文浩,“一种血管内窥镜激光消融导管”,已授权,授权公告日:2022.6.10,授权公告号:CN112842525B,专利号:ZL202110112868.0
14. 郭晶晶,徐立军,尚策,付博,“一种可植入式水凝胶光纤光栅葡萄糖传感器、制备方法及测量系统”,已授权,授权公告日:2023.3.21,授权公告号:CN113171091B,专利号:ZL202110434492.5
15. 马建国,徐立军,马向东,付博,“一种基于激光干涉的光纤阵列式声波信号采集装置”,已授权,授权公告日:2021.3.30,授权公告号:CN110553715B,专利号:ZL201910857667.6
16. 马建国,徐立军,马向东,付博,“一种基于光致超声和激光干涉的全光学超声探测装置”,已授权,授权公告日:2021.8.17,授权公告号:CN111912908B,专利号:ZL202010787228.5
17. 郭晶晶,尚策,徐立军,脱佳霖,郭校言,付博,“一种温度压力双参量柔性光纤触觉传感器、制备方法及测量系统”,已公开,申请号:202211509336.1
18. 张永彪,马翠,毛轲,石小峰,徐晓鹏,尚策,付博,“用于预测早产风险的cfRNA标志物”,已授权,授权公告日:2021.10.22,授权公告号:CN110964800B,专利号:ZL201910890694.3
19. 张永彪,徐晓鹏,石小峰,毛轲,蒋卓远,朱尚明,武嘉琦,查艳,尚策,付博,“用于预测半侧颜面短小畸形发生概率的组合物的应用方法”,已授权,授权公告日:2021.1.11,授权公告号:CN111235265B,专利号:ZL202010156600.2
20. Jianguo Ma, Lijun Xu, Xiangdong Ma, Bo Fu, “All-optical ultrasonic detection device based on light-induced ultrasound and laser interference,” 已授权, application date: Sep. 30, 2020, date of patent: Dec. 28, 2021, application number: 17/039,539, patent number: 11209259 [1]