求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

刘伦查看源代码讨论查看历史

跳转至: 导航搜索
刘伦
北京大学政府管理学院

刘伦,女,北京大学政府管理学院教授。

人物履历

教育背景

1、2018.3 剑桥大学 土地经济系 博士

2、2013.7 清华大学 城乡规划学 硕士

3、2013.7 北京大学 经济学 学士(双学位)

4、2010.7 清华大学 建筑学 学士

职业经历

1、2018.7-2019.4 剑桥大学 Research Associate

研究领域

1、城市与区域治理

2、数据科学城市治理

3、城市模拟政策评估

学术成果

专著

1、刘伦. 感知、模拟与人工智能:智能化城市管理. 北京: 清华大学出版社(即将出版).

2、Hassink, R., Liu, L., Jensana, A., Martinez-Taberner, G. EU-China Regional Innovation Joint Study. IUC, 2020.(报告)

3、刘伦, 陈茜. 世界建筑旅行地图(英国卷). 北京: 中国建筑工业出版社, 2019.

4、刘伦. 世界建筑旅行地图(法国卷). 北京: 中国建筑工业出版社, 2017.

论文

  • 1、Liu, L.*, Silva, E. A., Yang, Z. (2021). Similar outcomes, different paths: Tracing the relationship between neighborhood-scale built environment and travel behavior using activity-based modelling. Cities, 110, 103061.
  • 2、Liu, L.*, Gao, X., Zhuang, J., Wu, W., Yang, B., Cheng, W., Xiao, P., Yao, X., Deng, O. (2020). Evaluating the lifestyle impact of China’s rural housing land consolidation with locational big data: A study of Chengdu. Land Use Policy, 96, 104623. (Most Downloaded Articles in Land Use Policy)
  • 2、刘伦, 王辉. 城市研究中的计算机视觉应用进展与展望.城市规划, 2019(1): 117-124.
  • 4、Zhang, Y., Liu, L.*, & Wang, H. (2018). A new perspective on the temporal pattern of human activities in cities: The case of Shanghai. Cities, 87, 196-204.
  • 3、Liu, L., Silva, E. A., & Long, Y. (2018). Block-level dynamics of socio-economic spatial differentiation in Beijing: Trends and processes. Urban Studies, 56(6), 1198-1214.
  • 5、Zhang, Y., & Liu, L.* (2018). Understanding temporal pattern of human activities using Temporal Areas of Interest. Applied Geography, 94, 95-106.
  • 6、Gao, X., Liu, L.*, Zhuang, J., Ou, D., Li, Q., Deng, O., Li, J., & Zeng, M. (2018). The commuting rural labour forces revealed by mobile phone trace data. Environment and Planning A: Economy and Space, 51(8), 1611-1614.
  • 7、Liu, L., Silva, E. A., & Liu, J. (2018). A decade of battle on PM2.5 in Beijing. Environment and Planning A: Economy and Space, 50(8), 1549-1552.
  • 8、Liu, L., Silva, E. A., Wu, C., & Wang, H. (2017). A machine learning-based method for the large-scale evaluation of the qualities of the urban environment. Computers Environment and Urban Systems, 65, 113-125. (ESI highly cited paper, Most downloaded articles on Computers Environment and Urban Systems)
  • 9、Gao, X., Xu, A., Liu, L.*, Deng, O., Zeng, M., Ling, J., & Wei, Y. (2017). Understanding rural housing abandonment in China’s rapid urbanization. Habitat International, 67, 13-21.
  • 10、Long, Y., & Liu, L.* (2016). Transformations of urban studies and planning in the big/open data era: A review. International Journal of Image and Data Fusion, 7(4), 295-308. (Exclusive Editor’s Choice)
  • 11、刘伦, 刘合林, 王谦, 龙瀛. 大数据时代的智慧城市规划:国际经验. 国际城市规划, 2014(6): 38-43.
  • 12、刘伦, 龙瀛, 麦克·巴蒂. 城市模型的回顾与展望——访谈麦克·巴蒂之后的新思考. 城市规划, 2014(8): 63-70.

书章

1、Wang, H., Silva, E. A., Liu, L. (forthcoming). Large-scale evaluation of the urban street view with deep learning method. In Carta, S. (Eds.), Machine Learning, Artificial Intelligence and Urban Assemblages: Applications in Architecture and Urban Design. Wiley.

2、Silva, E. A., Liu, L., Kwon, H. R., Niu, H., Chen, Y, & Reis, J. (2021). What’s new in urban data analytics?, In Wong, C. and Rae, A. (Eds.), Applied Data Analysis for Urban Planning and Management. Sage.

3、Silva, E. A., Liu, L., Kwon, H. R., Niu, H., & Chen, Y. (2020). Hard and soft data integration in geocomputation: Bridging mixed methods methodologies in dynamic simulation models, In Geertman, S. and Stillwell, J. (Eds.), Handbook on Planning Support Science. Edward Elgar Publishers.

荣誉奖励

1、北京大学青年教师教学基本功比赛优秀教案奖,2020

2、Cambridge Overseas Trust Scholar,2013-2017

3、国家留学基金委全额奖学金,2013-2017

4、北京市优秀硕士毕业生,2013

5、清华大学优良本科毕业生,2010[1]

参考资料