求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

华佳东查看源代码讨论查看历史

跳转至: 导航搜索
华佳东
北京航空航天大学

华佳东,男,北京航空航天大学教授。

人物简历

教育经历

[1].2012.9 -- 2017.6 西安交通大学 机械工程 博士 硕博连读,导师:林京教授

[2].2008.9 -- 2012.7 西安交通大学 机械工程 学士

工作经历

[1].2019.9 -- 2020.9 北京航空航天大学 可靠性与系统工程学院 究员

[2].2017.9 -- 2019.9 北京航空航天大学 可靠性系统工程学院 博士后

学术成果

论文

(1) Han Zhang, Jing Lin, Jiadong Hua*, Tong Tong, Interpretable convolutional sparse coding method of Lamb waves for damage identification and localization, Structural Health Monitoring, 2021.

(2) Jiadong Hua, Xuwei Cao, Yinggang Yi, Jing Lin*, Time-frequency damage index of Broadband Lamb wave for corrosion inspection, Journal of Sound and Vibration, 2020, 464, 114985.

(3) Jiadong Hua, Liang Zeng, Fei Gao, Jing Lin*, Dictionary design for Lamb wave sparse decomposition, NDT & E International, 2019, 103: 98-110.

(4) Jiadong Hua, Liang Zeng, Jing Lin*, Liping Huang, Excitation series design and pulse compression synthesis for high-resolution Lamb wave inspection, Structural Health Monitoring, 2018, 18: 1464-1478.

(5) Jiadong Hua, Jennifer Michaels*, Xin Chen, Jing Lin, Simultaneous excitation system for efficient guided wave structural health monitoring, Mechanical Systems and Signal Processing, 2017, 95: 506-523.

(6) Jiadong Hua, Jing Lin*, Liang Zeng, Fei Gao, Pulse energy evolution for high-resolution Lamb wave inspection, Smart Materials and Structures, 2015, 24(6): 05016.

(7) Jiadong Hua, Fei Gao, Liang Zeng, Jing Lin*, Modified sparse reconstruction imaging of lamb waves for damage quantitative evaluation, NDT & E International, 2019, 107, 102143.

(8) Jiadong Hua, Zili Wang, Fei Gao, Liang Zeng, Jing Lin*, Sparse reconstruction imaging of damage for Lamb wave simultaneous excitation system in composite laminates, Measurement, 2019, 136: 201-211.

(9) Jiadong Hua, Jing Lin*, Liang Zeng, Zhi Luo, Minimum variance imaging based on correlation analysis of Lamb wave signals, Ultrasonics, 2016, 70: 107-122.

(10) Jiadong Hua, Jing Lin*, Liang Zeng, High-resolution damage detection based on local signal difference coefficient model, Structural Health Monitoring, 2014, 14(1): 20-34.[1]

参考资料