压缩传感查看源代码讨论查看历史
压缩传感 |
压缩传感理论主要包括信号的稀疏表示、编码测量和重构算法等三个方面。
简介
核心思想是将压缩与采样合并进行,首先采集信号的非自适应线性投影 (测量值),然后根据相应重构算法由测量值重构原始信号。压缩传感的优点在于信号的投影测量数据量远远小于传统采样方法所获的数据量,突破了香农采样定理的瓶颈,使得高分辨率信号的采集成为可能。
评价
信号的稀疏表示就是将信号投影到正交变换基时,绝大部分变换系数的绝对值很小,所得到的变换向量是稀疏或者近似稀疏的,以将其看作原始信号的一种简洁表达,这是压缩传感的先验条件,即信号必须在某种变换下可以稀疏表示。 通常变换基可以根据信号本身的特点灵活选取, 常用的有离散余弦变换基、快速傅里叶变换基、离散小波变换基、Curvelet基、Gabor 基 以及冗余字典等。 在编码测量中, 首先选择稳定的投影矩阵,为了确保信号的线性投影能够保持信号的原始结构, 投影矩阵必须满足约束等距性 (Restricted isometry property, RIP)条件, 然后通过原始信号与测量矩阵的乘积获得原始信号的线性投影测量。最后,运用重构算法由测量值及投影矩阵重构原始信号。信号重构过程一般转换为一个最小L0范数的优化问题,求解方法主要有最小L1 范数法、匹配追踪系列算法、最小全变分方法、迭代阈值算法等。[1]