复合转座子查看源代码讨论查看历史
复合转座子
|
|
|
1.蛋白质翻译过程中终止肽链合成的信使核糖核酸(mRNA)的三联体碱基序列。
2.mRNA翻译过程中,起蛋白质合成终止信号作用的密码子。
3.mRNA分子中终止蛋白质合成的密码子。
简介
终止密码: UAG,UAA,UGA是终止密码子。相应的DNA上的终止密码子序列是TAG,TAA,TGA。 终止密码子又称“无意义密码子”。不编码任何氨基酸的密码子,如UAA,UAG和UGA。当肽链延长到这3个密码子的任何一个时,即行停止,从而使已合成的多肽链释放出来,因此终止密码子相当于1个停止信号 。
密码子UAA,UAG和UGA并不编码任何氨基酸,因此,也称为无义密码子( nonsensecodon)但这个名称并不恰当,因为它们虽然不编码任何氨基酸,却起着终止肽链合成的作用,因此,称为终止密码子( termination codon)。UAA也称为赭石型( ochre),UAG称为琥珀型( amber),UGA称为乳白型(opal)密码子。所有这3个密码子均是作为肽链终止的密码子,它们在蛋白质合成中起着终止肽链延长的作用。有两个释放因子RF1和RF2,它们分别识别2个终止密码子:RF1识别UAA和UAG,RF2识别UAA和UGA。RF1和RF2均是蛋白质,这便表明,多核苷酸不仅可以和另一种多核苷酸相互作用,也可以和蛋白质起相互作用;也即是说,不仅碱基与碱基之间可以生成氢键而互相识别,也可以和蛋白质中的氨基酸生成氢键而被识别
发现过程
1964年Yanofsky在研究E.coli色氨酸合成酶A蛋白时推测无义密码子的存在。他的推测/是从两个不同的角度:一是为trp A编码的mRNA还编码了trpB,trpC,trpD和trpE。即一个mRNA 分子中可以作为不同多肽的模板,那么有可能在翻译时中途在某个位点(两个肽的连接处〕停止,然后再从下一个新的起点翻译,这样使各个肽可以分开,而不至于产生一条很长的肽链。这就意味着终止密码子的存在。另一个角度是他发现E.coli Trp-的突变株是不能合成完整的色氨酸合成酶蛋白,但继续对它进行诱变可以得到回复突变。回复突变中有两种,一种是个别发生了变化,而另一种是完全回复,没有任何氨基酸组成的变化,这表明, E.coliTrp-不可能是任何移码突变的结果,那么这类的突变很可能携带有阻止合成的无义密码子。
1962年Benzer和他的学生S.Champe对T4 r Ⅱ突变的研究时发现野生型的T4rⅡ这段有两个顺反子rⅡA和rⅡB,共同转录一个多顺反子mRNA,但翻译成两个分开的蛋白A和B。当发生缺失突变时,其中有一个突变型为r l589,证明是缺失所造成,缺失的区域含rⅡA基因右边的大部分,和rⅡB左边的小部分。互补实验表明rl589的产物是一条多肽,但无蛋白A的活性,但有B蛋白的活性。Benzer认为,这种缺失可能使mRNA失去了A蛋白合成“终止”和“B”蛋白合成“起始”的密码子,因此翻译时沿着一条mRNA阅读下去,产生了一条长的肽链。
1964年Brenner及其同事获得了T4噬菌体编码头部蛋白基因的琥珀突变(amber),并进行了精细作图,并分离研究了各种突变型的多肽。突变型的肽链比野生型的要短,因此可以推测琥珀突变可能产生终止密码子,使肽的合成在中途停止下来;由于突变位点越靠近基因的左端,所产生的肽链越短,越靠近右端越接近野生型,据此可以推测翻译的过程是从mRNA的5’端向3’阅读。肽链的合成是从N端向C端延伸。 由于头部蛋白80%是由新合成的蛋白质组成。因此他们将各种突变型及野生型T4噬菌体侵染E.coli后10分钟,把14C标记的氨基酸加到培养基中,过一段时间,从感染的E.coli 中抽提蛋白,头部蛋白可以通过14C标记来加以鉴别。
发现过程
1964年Yanofsky在研究E.coli色氨酸合成酶A蛋白时推测无义密码子的存在。他的推测/是从两个不同的角度:一是为trp A编码的mRNA还编码了trpB,trpC,trpD和trpE。即一个mRNA 分子中可以作为不同多肽的模板,那么有可能在翻译时中途在某个位点(两个肽的连接处〕停止,然后再从下一个新的起点翻译,这样使各个肽可以分开,而不至于产生一条很长的肽链。这就意味着终止密码子的存在。另一个角度是他发现E.coli Trp-的突变株是不能合成完整的色氨酸合成酶蛋白,但继续对它进行诱变可以得到回复突变。回复突变中有两种,一种是个别发生了变化,而另一种是完全回复,没有任何氨基酸组成的变化,这表明,E.coliTrp-不可能是任何移码突变的结果,那么这类的突变很可能携带有阻止合成的无义密码子。
1962年Benzer和他的学生S.Champe对T4 r Ⅱ突变的研究时发现野生型的T4rⅡ这段有两个顺反子rⅡA和rⅡB,共同转录一个多顺反子mRNA,但翻译成两个分开的蛋白A和B。当发生缺失突变时,其中有一个突变型为r l589,证明是缺失所造成,缺失的区域含rⅡA基因右边的大部分,和rⅡB左边的小部分。互补实验表明rl589的产物是一条多肽,但无蛋白A的活性,但有B蛋白的活性。Benzer认为,这种缺失可能使mRNA失去了A蛋白合成“终止”和“B”蛋白合成“起始”的密码子,因此翻译时沿着一条mRNA阅读下去,产生了一条长的肽链。
1964年Brenner及其同事获得了T4噬菌体编码头部蛋白基因的琥珀突变(amber),并进行了精细作图,并分离研究了各种突变型的多肽。突变型的肽链比野生型的要短,因此可以推测琥珀突变可能产生终止密码子,使肽的合成在中途停止下来;由于突变位点越靠近基因的左端,所产生的肽链越短,越靠近右端越接近野生型,据此可以推测翻译的过程是从mRNA的5’端向3’阅读。肽链的合成是从N端向C端延伸。 由于头部蛋白80%是由新合成的蛋白质组成。因此他们将各种突变型及野生型T4噬菌体侵染E.coli后10分钟,把14C标记的氨基酸加到培养基中,过一段时间,从感染的E.coli 中抽提蛋白,头部蛋白可以通过14C标记来加以鉴别。
实验方法评
他们的实验方法不是对各种突变型的产物测序,而是先将野生型的头部蛋白用胰蛋白酶和糜蛋白酶来处理,消化后所产生的极复杂的混合物中,通过电泳能分离、鉴定出8个各有特征的头部蛋白蛋白片段,分别是Cys, T7C(His), C12b(Tyr), T6(Trp), T2a(Pro), T2(Trp), C2(Tyr)和C5(His)片段。然后再测出各T4头部蛋白突变型产物含有几个以上的肽段来排序。表示排序的结果和精细作图的序列相一致,不仅表明了基因和蛋白质的共线性关系,同时证明突变型头部蛋白基因内有无义突变的存在,其位置应在各种突变产物的末端。[1]
参考文献
- ↑ 肿瘤NGS伴随诊断行业淘汰赛打响 加速癌症早筛市场崛起”网易订阅2021年5月18日,