求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

快中子查看源代码讨论查看历史

跳转至: 导航搜索

来自 搜狐网 的图片

快中子是全国科学技术名词审定委员会审定、公布的科技类名词。

关于汉字的起源[1],中国古代文献上有种种说法,如“结绳”、“八卦”、“图画”、“书契”等,古书上还普遍记载有黄帝史官仓颉造字的传说。现代学者认为,成系统的文字工具不可能完全由一个人创造出来,仓颉[2]如果确有其人,应该是文字整理者或颁布者。最早刻划符号距今8000多年。

名词解释

快中子是在核裂变反应中产生的自由中子,其动能可以达到1 兆电子伏特 (1.6×10−13 焦耳,对应的速度约为14000千米/秒,相当于光速的5%。它们被称作快中子,以区别于热中子和宇宙射线或者加速器中产生的高能中子。核反应中产生的中子符合麦克斯韦-玻耳兹曼分布,其能量在0到~14兆电子伏特之间。铀−235产生的中子平均能量为2兆电子伏特,且超过一半的中子不是快中子。因此仅仅靠铀−235裂变产生的中子无法引发增殖性材料(比如铀−238和钍−232)的裂变。

快中子可以通过中子慢化过程转变为热中子。中子慢化主要依靠减速剂。在核反应堆中,通常使用重水、轻水、或石墨来使中子减速。

快中子反应堆

快堆是一种以快中子引起易裂变核铀-235或钚-239等裂变链式反应的堆型。快堆的一个重要特点是:运行时一方面消耗裂变燃料(铀-235或钚-239等),同时又生产出裂变燃料(钚-239等),而且产大于耗,真正消耗的是在热中子反应堆中不大能利用的、且在天然铀中占99.2%以上的铀-238,铀-238吸收中子后变成钚-239。在快堆中,裂变燃料越烧越多,得到了增殖,故快堆的全名为快中子增殖反应堆。快堆是当今惟一现实的增殖堆型。

我国核能利用已进入商用阶段,已有9座核电反应堆机组在运行,总装机容量达到670万千瓦,主要堆型是压水堆。压水堆是热中子堆(或称慢中子堆),主要利用铀-235作为裂变燃料,而铀-235只占天然铀的0.7%左右。对压水堆来说,烧一次只能烧掉核燃料(即投入铀资源)的0.45%左右,剩下的99%还是烧不掉,其中主要是铀-238。

如果把快堆发展起来,将压水堆运行后产生的工业钚和未烧尽的铀-238作为快堆的燃料也进行如上的多次循环,由于它是增殖堆,裂变燃料实际不消耗,真正消耗的是铀-238,所以只有铀-238消耗完了,才不能继续循环。理论上,发展快堆能将铀资源的利用率提高到100%,但考虑到加工、处理中的损耗,一般来说可以达到60%~70%的利用率,是压水堆燃料一次通过的利用率的130~160倍。利用率提高了,贫铀矿也有开采价值,这样,从世界范围讲,铀资源的可采量将提高上千倍。

1986年,我国快堆技术开发纳入国家“863”高技术计划,开始了以6.5万千瓦热功率实验快堆为工程目标的应用基础研究。研究重点是快堆设计研究、燃料和材料、钠工艺、快堆安全等。至1993年总共建成20多台套有一定规模的实验装置和钠回路,为中国实验快堆的设计奠定了基础。

1993年,我国快堆研究进入发展阶段。由于我国在快堆基础研究和应用基础研究阶段对快堆设备和系统研究甚少,因此遵照以我为主、引进国外先进技术的原则,与俄罗斯进行了联合快堆技术设计,接着进行了自主的初步设计和施工设计,设计已经完成,主体土建工程已经结束,已有300多台大型设备安装就位,正在进行各系统的安装;燃料已验收,主要设备已到货,以设备投资计国产化率达到70%。2005年初,核级钠将进厂,堆本体将进行安装,预计2007年首次临界。

快堆技术比较复杂,工程开发投资较大,我们在国家“863”高技术计划领导下,完成了我国快堆发展战略和技术路线的研究,并提出我国快堆工程技术分三步发展的建议:

第一步,中国实验快堆,热功率6.5万千瓦,电功率2万千瓦,正在建造,计划2007~2008年临界和并网。

第二步,中国原型快堆,电功率约60万千瓦,建议2013年建造,2020年运行,正处规划建议阶段。

第三步,中国商用验证堆,电功率100万~150万千瓦,建议2018年建造,2025年运行,在此基础上2030年~2035年批量推广大型高增殖快堆。

国外快堆的发展已有半个世纪,发展快堆的9个国家美、俄、英、法、日、德、意、印、韩总共建成过21座快堆。

所有建造快堆的国家为了未来大规模核能的发展,均不同程度地开始研究用快堆来焚烧热堆产生的放射性废物,使核能变成更加清洁的能源,同时也开展一些新型快堆的预研。

需要大规模发展核能来替代常规能源的国家,必然要发展快堆和相应的闭式燃料循环,将铀资源用好、用尽。如果热堆发展已有一定规模,就应考虑首先用快堆、继而用更有效的加速器驱动次临界快堆将长寿命废物尽量焚烧掉,让需要地质深埋的废物尽量减少。

比较

大多数核裂变反应堆是热反应堆,它们使用中子减速剂使裂变产生的中子速度降低。减速可以大大增加裂变物质如铀-235、钚-239的原子核裂变反应截面。此外,铀-238对热中子的俘获截面很小,因此,减速以后更多的中子可以用于引发裂变,形成链式反应,而不会被铀-238俘获。这些效应使得轻水反应堆可以使用低浓缩铀。重水反应堆与石墨反应堆甚至可以使用天然铀作为核燃料,这是因为重水与石墨的中子俘获截面要比轻水小很多。

增加核燃料的温度可以通过多普勒展宽增加铀-238对热中子的吸收,从而产生对核反应堆控制的负反馈。当减速剂是一种循环使用的冷却剂(如重水、轻水)的时候,冷却剂沸腾会降低减速剂的密度,从而提供了负反馈。

对于大多数核燃料,中间能量的中子的裂变/俘获比例比快中子和热中子都低。一个例外是钍循环中使用的铀-233,这也使得钍循环对各种中子能量都有很好的裂变/俘获比例。

快中子增殖反应堆使用未经减速的快中子来维持反应,因此需要核燃料中的裂变物质相对于增殖物质铀-238有较高的浓度。然而,快中子的裂变/俘获比例对于大多数物质来说都比较高,而每一个快中子裂变反应都会释放出大量的中子,因此一个快中子增殖反应堆很可能产生比它消耗更多的裂变物质。

增殖反应堆的控制不能依靠多普勒展宽和减速剂所提供的负反馈。然而,燃料的热膨胀可以提供快速的负反馈。切尔诺贝利核事故以后,增殖反应堆的发展几乎停滞,几十年间仅仅制造了很少的反应堆。这也是由于铀的价格比较低廉。在未来的几年,一些亚洲国家计划建造一些增殖反应堆的大型原型。

参考文献