搜索算法查看源代码讨论查看历史
搜索算法 |
搜索算法是利用计算机的高性能来有目的的穷举一个问题解空间的部分或所有的可能情况,从而求出问题的解的一种方法。现阶段一般有枚举算法、深度优先搜索、广度优先搜索、A*算法、回溯算法、蒙特卡洛树搜索、散列函数等算法。在大规模实验环境中,通常通过在搜索前,根据条件降低搜索规模;根据问题的约束条件进行剪枝;利用搜索过程中的中间解,避免重复计算这几种方法进行优化。
简介
搜索算法实际上是根据初始条件和扩展规则构造一棵“解答树”并寻找符合目标状态的节点的过程。所有的搜索算法从最终的算法实现上来看,都可以划分成两个部分——控制结构(扩展节点的方式)和产生系统(扩展节点),而所有的算法优化和改进主要都是通过修改其控制结构来完成的。其实,在这样的思考过程中,我们已经不知不觉地将一个具体的问题抽象成了一个图论的模型——树,即搜索算法的使用第一步在于搜索树的建立。由图一可以知道,这样形成的一棵树叫搜索树。初始状态对应着根节点,目标状态对应着目标结点。排在前的结点叫父结点,其后的结点叫子结点,同一层中的结点是兄弟结点,由父结点产生子结点叫扩展。完成搜索的过程就是找到一条从根结点到目标结点的路径,找出一个最优的解。这种搜索算法的实现类似于图或树的遍历,通常可以有两种不同的实现方法,即深度优先搜索(DFS——Depth First search)和广度优先搜索(BFS——Breadth First Search)。
评价
如算法名称那样,深度优先搜索所遵循的搜索策略是尽可能“深”地搜索树。它的基本思想是:为了求得问题的解,先选择某一种可能情况向前(子结点)探索,在探索过程中,一旦发现原来的选择不符合要求,就回溯至父亲结点重新选择另一结点,继续向前探索,如此反复进行,直至求得最优解。深度优先搜索的实现方式可以采用递归或者栈来实现。由此可见,把通常问题转化为树的问题是至关重要的一步,完成了树的转换基本完成了问题求解在深度优先搜索的过程当中,往往有很多走不通的“死路”。假如我们把这些“死路”排除在外,不是可以节省很多的时间吗?打一个比方,前面有一个路径,别人已经提示:“这是死路,肯定不通”,而你的程序仍然很“执着”地要继续朝这个方向走,走到头来才发现,别人的提示是正确的。这样,浪费了很多的时间。针对这种情况,我们可以把“死路”给标记一下不走,就可以得到更高的搜索效率类似树的按层遍历,其过程为:首先访问初始点Vi,并将其标记为已访问过,接着访问Vi的所有未被访问过可到达的邻接点Vi1、Vi2……Vit,并均标记为已访问过,然后再按照Vi1、Vi2……Vit的次序,访问每一个顶点的所有未被访问过的邻接点,并均标记为已访问过,依此类推,直到图中所有和初始点Vi有路径相通的顶点都被访问过为止。[1]