放射性元素查看源代码讨论查看历史
放射性元素 | |
---|---|
放射性元素,(确切地说应为放射性核素)是能够自发地从不稳定的原子核内部放出粒子或射线(如α射线、β射线、γ射线等),同时释放出能量,最终衰变形成稳定的元素而停止放射的元素。这种性质称为放射性,这一过程叫做放射性衰变。含有放射性元素(如U、Th、Ra等)的矿物叫做放射性矿物。 [1]
基本简介
放射性是指元素从不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成稳定的元素而停止放射(衰变产物),这种现象称为放射性。衰变时放出的能量称为衰变能量。[2]
原子序数在83(铋)或以上的元素都具有放射性,但某些原子序数小于83的元素(如锝)也具有放射性。而有趣的是,从原子序93开始一直到鉳元素都有一个共同特性:原子序是偶数的,半衰期都特别长。
发现历程
放射性元素在发出射线的过程中会转变为另一种元素,这一现象是居里夫人在无意中发现的。有一次,居里夫人和她的丈夫为了弄清一批沥青铀矿样品中是否含有值得加以提炼的铀,对其中的含铀量进行了测定,但他们惊讶地发现,有几块样品的放射性甚至比纯铀的放射性还要大。
这就很明显地意味着,在这些沥青铀矿石中一定还含有别的放射性元素。同时,这些未知的放射性元素一定是非常少的,因为用普通的化学分析方法不能把它们检测出来。
居里夫妇带着十分激动的心情,搞到了几吨沥青铀矿,他们在一个很小的木棚里建了一个作坊,在很原始的条件下以极大的毅力在这些很重的黑色矿石中寻找这些痕量的新元素。
1898年7月,他们终于分离出极小量的黑色粉末,这些黑色粉末的放射性比同等数量的铀强400倍。这些黑色粉末含有一种在化学性质上和碲很相似的新元素,因此,它在周期表中的位置似乎应该处在碲的下面。
居里夫妇把这个元素定名为钋,以纪念居里的祖国波兰。但是钋只是使她们的黑色样品具有这样强的放射性的部分原因。因此,她们又把这项工作继续进行下去,到1898年12月,居里夫妇又提炼出一些放射性此钋还要强的东西,
其中含有另一种在化学特性上和钡很相似的元素,居里夫妇把它定名为镭,意思是“射线”。居里夫妇为了收集足够多的纯镭以便对它进行研究,又进行了四年的工作。居里夫人在1903年就她所进行的研究写了一个提要,作为她的博士论文。
这也许是科学史上最出色的博士论文,它使她两次获得了诺贝尔奖金。居里夫人和她的丈夫以及贝克勒尔因在放射性方面的研究而获得了1903年的诺贝尔物理学奖,1911年,居里夫人因为她在发现钋和镭方面立下的功绩而单独获得了诺贝尔化学奖。
钋和镭远比铀和钍不稳定,换句话说,前者的放射性远比后者显著,每秒钟有更多的原子发生衰变。它们的寿命非常之短,因此,实际上宇宙中所有的钋和镭都应当在一百万年左右的时间内全部消失。
那么,为什么我们还能在这个已经有几十亿岁的地球上发现它们呢,这是因为在铀和钍衰变为铅的过程中会继续不断地形成镭和钋。凡是能找到铀和钍的地方,就一定能找到痕量的钋和镭。
它们是铀和钍衰变为铅的过程中的中间产物在铀和钍衰变为铅的过程中还形成另外三种不稳定元素,它们有的是通过对沥青铀矿的细致分析而被发现的,有的则是通过对放射性物质的深入研究而被发现的。
1899年,德比埃尔内根据居里夫妇的建议,在沥青铀矿石中继续寻找其他放射性元素,终于发现了被他定名为锕的元素,这个元素后来被列为第89号元素;1900年,德国物理学家多恩指出,当镭发生衰变时,会生成一种气态元素。
放射性气体在当时是一种新鲜的东西,这个元素后来被命名为氡,并被列为第86号元素;最后,到1917年,两个研究小组——德国的哈恩和梅特涅小组、英国的索迪和克兰斯顿小组——又从沥青铀矿石中分离出第9l号元素——镤。
到1925年为止,已被确认的元素总共巳达八十八种,其中有八十一种是稳定的,七种是不稳定的。这样一来,努力找出尚未发现的四种元素(即第43,61,85,87号元素)就成为科学家们的迫切愿望了。
由于在所有已知元素中,从第84到92号都是放射性元素,因此,可以很有把握地预测第85和87号元素也应该是放射性元素。另一方面,由于第43号和第61号元素的上下左右都是稳定元素,所以似乎没有任何理由认为它们不是稳定元素。
因此,它们应该可以在自然界中找到。由于第43号元素在周期表中正好处在铼的上面,人们预料它和铼具有相似的化学特性,而且可以在同一种矿石中找到。事实上,发现铼的研究小组认为,他们肯定已测出了波长相当于第43号元素的X射线。
因此,他们宣称第43号元素已被发现。但是他们的鉴定并没有得到别人的肯定。在科学上,任何一项发现至少也应该被另一位研究者所证实,否则就不能算是一项发现。
1926年,伊利诺斯大学的两个化学家宜称他们已在含有第60号和第62号元素的矿石中找到了第61号元素。同年,佛罗伦萨大学的两个意大利化学家也以为他们已经分离出第61号元素。但是这两组化学家的工作都没有得到别的化学家的证实。
几年以后,亚拉巴马工艺学院的一位物理学家报道说,他已用他亲自设计的一种新的分析方法找到了痕量的第87号和第85号元素,但是这两项发现也都没有得到证实。后来发生的一些事情表明,第43,61,85和87号元素的所谓“发现”,只不过是这几位化学家在工作中犯了这样或那样的错误罢了。
在这四种元素当中,首先被确定无疑地证认出来的是第43号元素。曾经因发明回旋加速器而获得诺贝尔物理学奖的美国物理学家劳伦斯,通过用高速粒子轰击第42号元素钼的方法,在他的加速器中产生了第43号元素。
被轰击过的材料变成了放射性的物质,劳伦斯便把这些放射性物质送到意大利化学家赛格雷那里去进行分析,因为赛格雷对第43号元素的问题很感兴趣。
赛格雷和他的同事佩列尔把有放射性的那部分物质从钼中分离出来以后,发现它在化学特性上和铼很相似,但又不是铼。因此他们断言,它只能是第43号元素,并指出它和周期表中与之相邻的元素有所不同,是一种放射性元素。
由于它不能作为第44号元素的衰变产物而不断产生出来,所以事实上它在地壳中已不复存在。赛格雷和佩列尔就这样终于取得了命名第43号元素的权利,他们把它定名为锝,这是世界上第一个人工合成的元素。
1939年,第87号元素终于在自然界中被发现了。法国化学家佩雷在铀的衰变产物中把它分离了出来。由
于它的存在量极小,所以只有在技术上得到改进以后,人们才能在以前未能找到它的地方把它找田来。佩雷后来把这个新发现的元素命名为钫。第85号元素和锝一样,是在回旋加速器中通过对第83号元素铋进行轰击而得到的。
1940年,赛格雷、科森和麦肯齐在加利福尼亚大学分离出第85号元素。第二次世界大战中断了他们在这个元素方面所进行的工作,战后他们又重新进行,并在1947年提出把这个元素命名为砹。
与此同时,第四个也是最后一个尚未被发现的元素,第61号元素也在铀的裂变产物中发现了。橡树岭国立实验室的马林斯基、格伦丁宁和科里尔这三位化学家在1945年分离出第61号元素,他们把它命名为钷。
这样,元素一览表,从第1号至92号,终于全部齐全了。但是,从某种意义上说,向元素进军的最艰巨历程才刚刚开始,因为科学工作者已经突破了周期表的边界。原来,铀并不是周期表中最后一个元素。
相关危害
α、β、γ三种射线
地球上的一切自然物质中都含有不同数量的放射性元素,整个地球、乃至整个宇宙的一切自然物质,实际上都是由103种天然元素(不包括人造元素)组成的。在103种天然元素中,有
一族元素具有放射性特点,被称为“放射性元素族”,所谓“”放射性元素“,是指这些元素的原子核不稳定,在自然界的自然状态下不断地进行核衰变,在衰变过程中放射出αβγ三种射线和有放射性特点的隋性气体氡气。
其中的α射线(粒子)实际上是氦(He)元素的原子核,由于它质量大、电离能力强和高速的旋转运行,所以是造成对人体内照射危害的主要射线;β射线是负电荷的电子流。
γ射线是类似于医疗透视用的X射线一样和波长很短的电磁波,由于它的穿透力很强,所以是造成人体外照射伤害的主要射线;由衰变而产生的氡(Rn)气是自然界中仍具有放射性特点的惰性气体,由于它还要继续衰变,因此被吸入肺部后,容易造成对人体内照射(特别是对肺)的伤害。
β射线速度接近光速,α射线(粒子)速度大约是光速的十分之一,电离强度是α、β、γ中最强的,但穿透性最弱,只释放出α粒子的放射性同位素在人体外部不构成危险。
然而,释放α粒子的物质(镭、铀等等)一旦被吸入或注入,那将是十分危险。它就能直接破坏内脏的细胞。γ是光子,没有静止质量,比X射线的穿透力强,要是被照射,时间长了,对人的健康危害很大。
另电离程度α>;β>;γ,贯穿程度α<;β<;γ。
放射性元素——自然界平衡系统的一部分
在天然“放射性元素”中,人们常听说的放射能量最大的是铀(U)、钍(Th)和镭(Ra),其次有钾-40(40K),铷(Rb)和铯(Cs)。这6种天然放射性元素是构成地球和宇宙自然界一切物质的组成部分(当然很微量)。
无论是在各类岩石和土壤中,还是在一切江河湖海的水中和大气中,都有不同数量的放射元素存在。其中铀在地壳中占“克拉克值”平均含量的千分之一。这就是说,我们人类和一切生命所赖以地球的成份中本来就始终存在着天然的放射性物质。
但是它不但没有阻挡住万物的生存发展和人类的繁衍生息,反而使放射性元素越来越被广泛利用在许多方面(原子核电站、空间技术、医疗技术、同位素技术等)为人类服务。
自然界天然存在的低浓度的放射性辐射不但不会危害人类健康,而且已经是自然界平衡系统的组成部分,人类和一切生命已经完全适应了这个平衡系统的生存环境,如果破坏了这个平衡系统,可能反而对人类带来不利的影响。
了解这些概念,就知道自然界本来就存在的放射性辐射并不可怕,只要我们能够正确地认识它的基础上科学的应用它,就绝不会造成对人民身心健康的伤害。
⒈无论是各类岩石(天然石材)中,还是土壤和海水中,普遍都存在不同数量的(但都是微量或很微量的)放射性元素。
⒉由水成(沉积)生成的大理石类和板石类中的放射性元素含量,一般都低于地壳平均值的含量(其中只有少量的黑色板石可能高于地壳平均值);
⒊在火成岩的花岗岩类(装饰石材中的“花岗石”一词是商业术语,它包括了地质学中的全部火成岩,包括花岗岩类、闪长岩类,玄武岩类、辉长岩类等和有装饰性能特点的变质岩,如,片麻状花岗岩、花岗片麻岩等)。
暗色系列的(包括黑列)花岗岩和“浅色系列”中的灰色系列花岗岩,其放射性元素含量也都低于地壳平均值有含量;
⒋只有“浅色系列”中的真正的花岗岩类和由火成岩变质形成的片麻状花岗岩及花岗片麻岩等(包括白色系列、红色系列、浅色的绿色系列和花斑色系列),其放射性元素含量稍高于地壳平均值的含量。
在全部天然装饰石材中,大理石类、绝大多数的板石类、暗色系列(包括黑色、蓝色、暗色中的绿色)和灰色系列的花岗岩类,其放射性强度小,即使不进行任何检测也能确认是“A类”产品,可以放心大胆的用在家庭室内装修和任何场合中。
对于浅色系列中的白色、红色、绿色和花斑色系列的花岗岩,也不能笼统地认为放射性辐射强度都大,而是只有在以下几种情况下,其放射性辐射强度才有可能偏大:
⑴白色花岗岩类主要是花岗岩类中的白岗岩
白岗岩是地下岩浆冷凝的后期阶段生成的,它的主要成分是二氧化硅(Sio2,即石英),在岩石中高达73—77%。这种岩石生成的阶段(即岩浆冷凝的后期阶段)恰好也是地下岩浆中的铀、钍、铷、钾等放射性元素相对聚集的阶段。
由于一切元素(包括放射性元素)在地球中的分布都是极不均匀的,如果恰好遇到某一地区的放射性元素分布相对稍多(地质上称为“本底偏高”)时,那么这个地区出产的白岗岩的放射性辐射强度就有可能偏大。
⑵红色花岗岩类
含钾的矿物钾长石是红色花岗岩的主要成分,而钾元素中的同位素钾-40(40K)本身就是放射性元素。所以含钾矿物质(呈浅粉色、粉红色等)越多,其辐射强度有可能越偏高(大)。此外,在红色花岗岩类中,包括了片麻状花岗岩和花岗片麻岩。
这种在距今二三十亿年前生成的古老岩石中,不仅含钾长石多,而且有时还含一种颜色美丽的(紫红色、酱红色、紫色等)特殊矿物质——锆石(ZrSiO4)。
锆石矿物质中常混有铀、钍等放射性元素,从而使花岗岩的红色更加鲜艳华贵的同时,随之也提高了辐射强度,这就是著名的“印度红”和“南非红”辐射强度偏大(高)的原因所在。
⑶浅色系列的绿色花岗岩
有时含一种颜色鲜艳美丽和绿色、翠绿色、兰绿色的特殊矿物质——天河石。天河石本身就是由弱放射性元素钾、铷、铯组成的〖(K,Rb,Cs)(AlSi3O8)〗,因此含有这种矿物质的名贵的绿色花岗岩,其辐射强度可能偏大。
⑷花斑系列的花岗岩
由于常有含钾的矿物质和石英等其它矿物质组成的“大斑晶”,构成漂亮的斑状花岗岩,所以其辐射强度也有可能偏大。由上述可知,在全部浅色系列的花岗岩中。
只有“本底偏高”地区的白岗岩、含钾长石矿物质多(特别是含钾-40同位素多)的花岗岩、含锆石矿物质(古老)变质岩和含天河石矿物质的花岗岩,才有可能形成放射性辐射强度偏大和可能有一定的现象。
而这一部分花岗岩在全浅色系列的花岗岩中所占的数量是比较少的(约占20%—25%),所以对大部分浅色花岗岩仍可放心大胆的使用。那么为什么少量黑色板石的放射性辐射强度也有可能偏大(偏高)呢?这是因为。
板石类石材都是由江、河、湖泊、海洋中沉积的泥质岩石变化(地质上称为“变质”)而成的,其中的黑色板石中含有较多的碳质成份。泥质和碳质在水下沉淀时都有较强的吸附力和粘接力,能够把水中的放射性物质和各种杂质都吸附到泥质和碳质中沉积下来,从而造成了有些黑色板石的辐射强度可能偏大。
辐射强度
1、白色花岗岩类主要是花岗岩类中的白岗岩。
白岗岩是地下岩浆冷凝的后期阶段生成的,它的主要万分是二氧化硅(SiO2,即石英),在岩石中高达73—77%。这种岩石生成的阶段(即岩浆冷凝的后期阶段)恰好也是地下岩浆中的铀、钍、铷、钾等放射性元素相对聚集的阶段。
由于一切元素(包括放射性元素)在地球中的分布都是极不均匀的,如果恰好遇到某一地区的放射性元素分布相对稍多(地质上称为“本底偏高”)时,那么这个地区出产的白岗岩的放射性辐射强度就有可能偏大。
2、红色花岗岩类
含钾的矿物钾长石是红色花岗岩的主要成分,而钾元素中的同位素钾-40(40K)本身就是放射性元素。所以含钾矿物质(呈浅粉色、粉红色等)越多,其辐射强度有可能越偏高(大)。此外,在红色花岗岩类中,包括了片麻状花岗岩和花岗片麻岩。
这种在距今二三十亿年前生成的古老岩石中,不仅含钾长石多,而且有时还含一种颜色美丽的(紫红色、酱红色、紫色等)特殊矿物质——锆石(ZrSiO4)。
锆石矿物质中常混有铀、钍等放射性元素,从而使花岗岩的红色更加鲜艳华贵的同时,随之也提高了辐射强度,这就是著名的“印度红”和“南非红”辐射强度偏大(高)的原因所在。
3、浅色系列的绿色花岗岩
有时含一种颜色鲜艳美丽和绿色、翠绿色、兰绿色的特殊矿物质——天河石。天河石本身就是由弱放射性元素钾、铷、铯组成的〖(K,Rb,Cs)(AlSi3O8)〗,因此含有这种矿物质的名贵的绿色花岗岩,其辐射强度可能偏大。
4、花斑系列的花岗岩
由于常有含钾的矿物质和石英等其它矿物质组成的“大斑晶”,构成漂亮的斑状花岗岩,所以其辐射强度也有可能偏大。由上述可知,在全部浅色系列的花岗岩中。
只有“本底偏高”地区的白岗岩、含钾长石矿物质多(特别是含钾-40同位素多)的花岗岩、含锆石矿物质(古老)变质岩和含天河石矿物质的花岗岩,才有可能形成放射性辐射强度偏大和可能有一定的现象。
而这一部分花岗岩在全浅色系列的花岗岩中所占的数量是比较少的(约占20%—25%),所以对大部分浅色花岗岩仍可放心大胆的使用。那么为什么少量黑色板石的放射性辐射强度也有可能偏大(偏高)呢?这是因为。
板石类石材都是由江、河、湖泊、海洋中沉积的泥质岩石变化(地质上称为“变质”)而成的,其中的黑色板石中含有较多的碳质成份。泥质和碳质在水下沉淀时都有较强的吸附力和粘接力,能够把水中的放射性物质和各种杂质都吸附到泥质和碳质中沉积下来,从而造成了有些黑色板石的辐射强度可能偏大。