方 立查看源代码讨论查看历史
|
方 立,男,福州大学先进制造学院与海洋学院教授。
人物简历
2011/10-2017/02,全日制博士,德国慕尼黑工业大学(Technical University of Munich, Germany),土木、地质与环境工程学院,摄影测量与遥感研究所(PF),摄影测量与遥感技术专业。
2009/10-2011/03,全日制硕士,德国慕尼黑工业大学,土木、地质与环境工程学院,地理信息科学专业。
2007/09-2009/06,全日制硕士,中国地质大学(武汉),自然地理专业。
2003/09-2007/06,全日制本科,中国地质大学(武汉),土地资源管理专业。
2018/08-至今; 研究员、课题组长;泉州装备制造研究所;
2017/02-2018/07; 高级工程师(全职); MUVI智能科技有限公司(德国慕尼黑);
2016/08-2017/01; 助理研究员(全职);慕尼黑工业大学摄影测量与遥感技术研究所;
社会兼职
IEEE Geoscience and Remote Sensing Society,会员
担任Isprs Journal of Photogrammetry and Remote Sensing, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Geoscience and Remote Sensing Letters等学术刊物审稿专家
研究领域
摄影测量与遥感、空间信息智能处理与应用、地理信息科学、模式识别与智能系统
科研课题
地震滑坡灾害隐患早起识别及监测预警关键技术研发及示范应用.(地方科技计划项目)
中科院海西研究院“前瞻跨越”计划项目.
面向火场应用的短波红外和热成像相机图像增强、目标监测和识别技术研究.(企业委托)
基于多尺度卷积神经网络人脸识别的场景应用——课堂考勤.(企业委托)
基于深度学习的智能卫裤系统.(企业委托)
学术成果
1. Fang, L., Ye, Z., Su, S., Kang, J.,& Tong, X.H. (2020). Glacier Surface Motion Estimation from SAR Intensity Images Based on Subpixel Gradient Correlation. Sensors.
2. Fang, L., Ye, Z., Pan, Y. & Tong, X.H. (2020). Relation-based Point Embedding for ALS Point Clouds Classification. Remote Sensing. (In press)
3. Shi, C., Fang, L.*, Lv, Z. Y. & Shen, H. F. (2020). Improved Generative Adversarial Networks for Semi-supervised VHR Remote Sensing Image Classification. IEEE Geoscience and Remote Sensing Letters. (In press)
4. Shi, C., Fang, L.* & Shen, H. F. (2020). Convolutional Neural Networks with Class-driven Loss for Multiscale VHR Remote Sensing Image Classification. IEEE Access.
5. Hu, B., Li, H., Zhang, X.F & Fang, L. (2020). Oil and Gas Mining Deformation Monitoring and Assessments of Disaster : Using interferometric synthetic aperture radar technology. IEEE Geoscience and Remote Sensing Magazine.
6. Sun, J.G., Wang, W.L., Wei, X., Fang, L., et al. (2020). Deep clustering with intra-class distance constraint for hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing.
7. Liang, J., Xu, J.C., Shen, H.F. & Fang, L.(2020). Land-Use Classification via Constrained Extreme Learning Classifier based on Cascaded Deep Convolutional Neural Networks.European Journal of Remote Sensing.
8. Fang, L. (2018). Glacier monitoring using spaceborne SAR intensity images. ISBN: 978-3-8440-6352-3, Book, Shaker Verlag, Aachen, Germany. (个人英文专著)
9. Fang, L., Wei, X., Yao, W., Xu, Y., & Stilla, U. (2017). Discriminative features based on two layers sparse learning for glacier area classification using sar intensity imagery. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, PP(99), 1-13.
10. Fang, L., Xu, Y., Yao, W., & Stilla, U. (2016). Estimation of glacier surface motion by robust phase correlation and point like features of sar intensity images. Isprs Journal of Photogrammetry & Remote Sensing, 121(10), 92-112.
11. Fang, L., Hoegner, L., & Stilla, U. (2015). Automatic Mapping of Glacier Based on SAR Imagery by Benefits of Freely Optical and Thermal Data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(3), 47.
12. Fang, L., & Stilla, U. (2014). Masked Correlation for Improvement of 2D Glacier Motion Estimation Based on Terrasar-x Imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(7), 9.
13. Fang, L., Maksymiuk, O., Schmitt, M., & Stilla, U. (2014). Potentials and Limits of Comprehensive 2D Glacier Motion Estimation using Satellite SAR Data. In Proceedings of DGPF (Vol. 23).
14. Fang, L., Maksymiuk, O., Schmitt, M., & Stilla, U. (2013). Determination of glacier surface area using spaceborne SAR imagery. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Hannover Workshop (pp. 105-110).
15. Fang, L., Maksymiuk, O., Schmitt, M., & Stilla, U. (2013). Improvement of motion estimation of the Taku glacier using spaceborne SAR images. In Proceedings of DGPF (Vol. 33, pp. 62-70). (EI检索)
获奖情况
福建省引进海外高层次人才B类[1]