開啟主選單

求真百科

變更

核裂变

增加 1,886 位元組, 4 年前
無編輯摘要
'''核裂变'''
{{Infobox person
| 姓名     = 核裂变
|圖片 = [[File:W020180831579414671284.jpg|缩略图|居中|250px|[https://image.so.com/view?q=%E6%A0%B8%E8%A3%82%E5%8F%98&src=tab_www&correct=%E6%A0%B8%E8%A3%82%E5%8F%98&ancestor=list&cmsid=a32b7e15027132eaf998a2d54fbefd3d&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=130&adstar=0&clw=246#id=37f2178e230f07fab30c52f46d3ec5ad&currsn=0&ps=93&pc=93 原图链接][http://www.chinansc.cn/ztbd/jn311rbfdhsgyznzt/kpzs_20392/hdjbzs/201203/t20120308_457330.shtml 图片来源于核与辐射安全中心网]]]
}}
''' 核裂变 ''' 又称核分裂,是指由重的 [[ 原子核]](主要是指 [[ ]] 核或钚核)分裂成两个或多个质量较小的 [[ 原子 ]] 的一种核反应形式。 [[ 原子弹 ]] 或核能发电厂的能量来源就是核裂变。其中铀裂变在 [[ 核电厂 ]] 最常见,热中子轰击铀-235原子后会放出2到4个 [[ 中子 ]] ,中子再去撞击其它铀-235原子,从而形成链式反应。
=='''基本信息'''==
=='''定义'''==
[[File:20100113175558-380557658.jpg|缩略图|300px|[https://image.so.com/view?q=%E6%A0%B8%E8%A3%82%E5%8F%98&src=tab_www&correct=%E6%A0%B8%E8%A3%82%E5%8F%98&ancestor=list&cmsid=a32b7e15027132eaf998a2d54fbefd3d&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=130&adstar=0&clw=246#id=d75aba7a88dd5dc07a74f6370eca199e&currsn=0&ps=93&pc=93 原图链接][https://wenwen.sogou.com/z/q174461794.htm 图片来源于搜狗网]]]
核裂变(Nuclear fission)又称核分裂,是一个 [[ 原子核 ]] 分裂成几个原子核的变化。
裂变只有一些 [[ 质量 ]] 非常大的原子核像 [[ ]](yóu)、钍(tǔ)和钚(bù)等才能发生核裂变。这些 [[ 原子 ]] 的原子核在吸收一个 [[ 中子 ]] 以后会分裂成两个或更多个质量较小的原子核,同时放出二个到三个中子和很大的能量,又能使别的原子核接着发生核裂变……,使过程持续进行下去,这种过程称作链式反应。原子核在发生核裂变时,释放出巨大的能量,这些能量被称为原子核能,俗称原子能。1千克铀-238的全部核的裂变将产生20,000兆瓦小时的能量,与燃烧至少2000吨煤释放的能量一样多,相当于一个20兆瓦的发电站运转1,000小时。<ref>[https://www.epcnn.com/hedian/1239.html 核裂变反应原理_核裂变反应方程式],电力届网,2018-08-09</ref>
核裂变也可以在没有外来中子的情形下出现,这种核裂变称为自发裂变,是放射性衰变的一种,只存在于几种较重的 [[ 同位素 ]] 中。不过大部份的核裂变都是一种有中子撞击的核反应,反应物裂变为二个或多个较小的原子核。核反应是依中子撞击的机制所产生,不是依照自发裂变中,相对较固定的指数衰减及半衰期特性所控制。<ref>[1http://www.people.com.cn/GB/keji/39327/2914169.html 核裂变和核聚变],人民网,2004年10月12日</ref>
铀裂变在 [[ 核电厂 ]] 最常见,热中子轰击铀原子会放出2到4个 [[ 中子 ]] ,中子再去撞击其它铀原子,从而形成链式反应而自发裂变。撞击时除放出中子还会放出热,如果 [[ 温度 ]] 太高,反应炉会熔掉,而演变成反应炉融毁造成严重灾害,因此通常会放控制棒(中子吸收体)去吸收中子以降低分裂速度。
=='''原理介绍'''==
[[File:01300000496856125491633450728.jpg|缩略图|300px|[https://image.so.com/view?q=%E6%A0%B8%E8%A3%82%E5%8F%98&src=tab_www&correct=%E6%A0%B8%E8%A3%82%E5%8F%98&ancestor=list&cmsid=a32b7e15027132eaf998a2d54fbefd3d&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=130&adstar=0&clw=246#id=9e2a521f36fb29b10afd62f856e7b426&currsn=0&ps=93&pc=93 原图链接][http://tupian.baike.com/a1_81_63_01300000496856125491633450728_jpg.html 图片来源于互动百科网]]]
裂变释放能量是与 [[ 原子核 ]] [[ 质量]]-能量的储存方式有关。从最重的元素一直到铁,能量储存效率基本上是连续变化的,所以,重核能够分裂为较轻核(到铁为止)的任何过程在能量关系上都是有利的。如果较重元素的核能够分裂并形成较轻的核,就会有能量释放出来。
然而,很多这类重元素的核一旦在 [[ 恒星 ]] 内部形成,即使在形成时要求输入能量(取自超新星爆发),它们却是很稳定的。不稳定的重核,比如铀-235的核,可以自发裂变。快速运动的中子撞击不稳定核时,也能触发裂变。由于裂变本身释放分裂的核内中子,所以如果将足够数量的放射性物质(如铀-235)堆在一起,那么一个核的自发裂变将触发近旁两个或更多核的裂变,其中每一个至少又触发另外两个核的裂变,依此类推而发生所谓的链式反应。这就是称之为原子弹(实际上是核弹)和用于发电的核反应堆(通过受控的缓慢方式)的能量释放过程。<ref>[http://gaozhongwuli.com/zongjie/x35/481796.html 核裂变和核聚变的区别],高中物理网</ref>
对于 [[ 核弹 ]] ,链式反应是失控的爆炸,因为每个核的裂变引起另外好几个核的裂变。对于核反应堆,反应进行的速率用插入控制棒来控制,使得平均起来每个核的裂变正好引发另外一个核的裂变。
核裂变所释放的高能量中子移动速度极高(快中子),因此必须通过减速,以增加其撞击原子的机会,同时引发更多核裂变。一般商用核反应堆多使用慢化剂将高能量中子速度减慢,变成低能量的中子(热中子)。商营核反应堆普遍采用镉棒、 [[ 石墨 ]] 和较昂贵的 [[ 重水 ]] 作为慢化剂。
=='''发现过程'''==
[[File:1ace-hkrzvkv9712945.jpg|缩略图|300px|[https://image.so.com/view?q=%E6%A0%B8%E8%A3%82%E5%8F%98&src=tab_www&correct=%E6%A0%B8%E8%A3%82%E5%8F%98&ancestor=list&cmsid=a32b7e15027132eaf998a2d54fbefd3d&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=130&adstar=0&clw=246#id=bf457b675294f082658e42bca4f9b3fc&currsn=0&ps=93&pc=93 原图链接][http://k.sina.com.cn/article_6544974842_1861c63fa00100ac3i.html?display=0&retcode=0 图片来源于新浪网]]]
[[ 莉泽·迈特纳]](Lise Meitner)和 [[ 奥多·哈恩]](Otto Hahn)同为 [[ 德国 ]] 柏林威廉皇帝研究所(Kaiser Wilhelm Institute)的研究员。作为 [[ 放射性元素[2] ] 研究的一部分,迈特纳和哈恩曾经奋斗多年创造比铀重的原子(超铀原子)。用游离质子轰击铀原子,一些质子会撞击到铀 [[ 原子核 ]] ,并粘在上面,从而产生比铀重的元素。这一点看起来显而易见,却一直没能成功。
他们用其他重金属测试了自己的方法,每次的反应都不出所料,一切都按莉泽的物理方程式所描述的发生了。可是一到铀,这种人们所知的最重的元素,就行不通了。整个20世纪30年代,没人能解释为什么用铀做的实验总是失败。
从物理学上讲,比铀重的原子不可能存在是没有道理的。但是,100多次的试验,没有一次成功。显然,实验过程中发生了他们没有意识到的事情。他们需要新的实验来说明游离的 [[ 质子 ]] 轰击铀 [[ 原子核 ]] 时究竟发生了什么。
最后,奥多想到了一个办法:用非放射性的 [[ ]] 作标记,不断地探测和测量放射性的 [[ ]] 的存在。如果铀衰变为镭,钡就会探测到。
他们先进行前期实验,确定在铀存在的条件下钡对放射性镭的反应,还重新测量了镭的确切衰变速度和衰变模式。这花了他们三个月的时间。没等他们进行实质性的实验,莉泽就不得不逃往 [[ 瑞典 ]] ,躲避上台的 [[ 希特勒 ]][[ 纳粹党 ]] 。奥多只得独自进行他们的伟大的实验。
奥托·哈恩完成实验两周后,莉泽·迈特纳就收到了一份长长的报告,其中记述了他实验的失败。哈恩用集束粒子流轰击铀,却连镭也没得到,只探测到了更多的钡--钡远远多出了实验开始时的量。他感到迷惑不解,请求莉泽帮他解释这究竟是怎么回事。
她立即认识到自己已经找到了答案:质子的增加使铀原子核变得很不稳定,从而发生分裂。他们又做了一个实验,证明当游离的质子轰击放射性铀时,每个铀原子都分裂成了两部分,生成了钡和氪。这个过程还释放出巨大的能量。就这样迈特纳发现了核裂变的过程。
将近4年之后,1942年12月2日下午2时20分,恩里克·费米扳动开关,几百个吸收中子的镉控制棒冲出石墨块和数吨氧化铀小球垒成的反应堆。费米在 [[ 芝加哥大学 ]] 斯塔格足球场的西看台下的地下网球场内堆放了4.2万个石墨块。这是世界上第一个核反应堆--是迈特纳发现的产物。1945年,原子弹的发明是她的核裂变发现的第二次应用。我们应谨慎利用核裂变!<ref>[https://www.doc88.com/p-3933569721768.html 核裂变的发现],道客巴巴网</ref>
=='''裂变过程'''==
[[File:ZO05liZRNFpkkUHc2e0Ch9qMxHjFxLlgbCNoMkZCnh6fP1493476425702.jpg|缩略图|300px|[https://image.so.com/view?q=%E6%A0%B8%E8%A3%82%E5%8F%98&src=tab_www&correct=%E6%A0%B8%E8%A3%82%E5%8F%98&ancestor=list&cmsid=a32b7e15027132eaf998a2d54fbefd3d&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=130&adstar=0&clw=246#id=083ef77951c388801fc4494057edf998&currsn=0&ps=93&pc=93 原图链接][http://dy.163.com/v2/article/detail/CJ7MJVTP0511BJIC.html 图片来源于网易网]]]
下面按液滴模型的观点,简述裂变的全过程。处于激发态的 [[ 原子核]](例如,铀-235核吸收一个中子之后,就形成激发态的铀-236核)发生形变时,一部分激发能转化为形变势能。随着原子核逐步拉长,形变能将经历一个先增大后减小的过程。这是因为有两种因素在起作用:来自核力的表面能是随形变而增大的;来自质子之间静电斥力的库仑能却是随形变的增大而减小的。
两种因素综合作用的结果形成一个裂变势垒,原子核只有通过势垒才能发生裂变。势垒的顶点称为鞍点。到达最终断开的剪裂点后,两个初生碎片受到相互的静电斥力作用,向相反方向飞离。静电库仑能转化成两碎片的动能。初生碎片具有很大的形变,它们很快收缩成球形,碎片的形变能就转变成为它们的内部激发能。   具有相当高激发能的碎片,以发射若干中子和 [[ γ射线 ]] 的方式退激,这就是裂变瞬发 [[ 中子 ]] 和瞬发 [[ γ射线 ]] 。退激到基态的碎片由于中子数(N)与质子数(Z)的比例(N/Z)偏大,均处于β稳定线的丰中子一侧,因此要经历一系列的β衰变而变成稳定核(见远离β稳定线的核素)。这就是裂变碎片的β衰变链。在β衰变过程中,有些核又可能发出中子,这此中子称为缓发中子。以上就是一个激发核裂变的全过程。
=='''裂变几率'''==
[[File:T01fae415d69bee68c6.jpg|缩略图|300px|[https://image.so.com/view?q=%E6%A0%B8%E8%A3%82%E5%8F%98&src=tab_www&correct=%E6%A0%B8%E8%A3%82%E5%8F%98&ancestor=list&cmsid=a32b7e15027132eaf998a2d54fbefd3d&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=130&adstar=0&clw=246#id=f5b5b5d45264e61f3108ed50b138b625&currsn=0&ps=93&pc=93 原图链接][https://baike.so.com/doc/6726015-6940244.html 图片来源于360搜索网]]]
稳定的重核的基态能量总是低于裂变势垒,要越过势垒,才能发生裂变,处于基态的核可以通过量子力学的 [[ 隧道效应 ]] ,有一定的几率穿越势垒而发生裂变,这就是自发裂变。势垒越高,越宽,穿透的几率就越小,原子核自发裂变的平均寿命τ就越长,图2给出了几种重核的自发裂变半衰期 t┩(约0.693τ)。 从图上可见 裂变几率变化的总趋势是随Z/A(Z是原子核的电荷数,A是质量数)的增加而迅速增加,和液滴模型的预测一致(见后面裂变理论部分)
重核又可能受到外来因素的影响而激发,当激发能超过裂变势垒时,就有比隧道效应大得多的几率越过势垒发生裂变,这就是感生裂变。对于感生裂变,发生裂变的几率大小可用裂变截面(核反应、核反应截面)来衡量。对于低能中子引起的裂变,偶偶核与奇A核(见原子核) 的情况有显著的差别。 图3是奇A核铀-235和偶偶核铀 -238的中子裂变截面曲线。可以看到, 只有当中子能量超过1MeV时,才能使铀-238裂变,这样的裂变称为有阈裂变,而铀-235却没有这个限制。这是由于偶偶核俘获热中子后形成的复合核的激发能低于裂变势垒,只有当入射中子能量足够高时,才能超过势垒;奇A核吸收一个中子的结合能较大,即使是热中子入射,形成的复合核的激发能也已超过了裂变势垒的高度。这就是为什么只有铀-233 、铀-235、钚-239等奇A核才能做核燃料的主要原因。
=='''裂变产物'''==
核裂变所形成的某一给定质量的初级裂变产物大部分是一些很不稳定的丰中子同质异位素(称为质量链)。其中不同电荷数Z的裂变产物的产额P(Z)服从高斯分布:
式中C是与 [[ 质量 ]] [[ 电荷 ]] 无关的常数,Zp是该质量链中最可几电荷数 。
碎片分开时,由于库仑斥力,可以具有很大的动能,例如热中子导致的铀-235裂变,碎片的平均动能可达170MeV左右,占了裂变释放的总能量80%以上。在不少情况下,不同方向飞出的碎片数依赖于出射束与入射束的夹角,即角分布出现各向异性。通过对碎片角分布的研究,可以进一步了解裂核变机制。实验表明:裂变碎片角分布与入射粒子的能量和自旋有密切关系,也与裂变核本身的质量、电荷和自旋有关。
=='''裂变中子'''==
[[File: 王振耀8e06000903f971e33c8c.jpg|缩略图| 居中|250px300px|[httphttps://pic8image.nipicso.com/20100621/2163148_003328533247_2.jpg view?q=%E6%A0%B8%E8%A3%82%E5%8F%98&src=tab_www&correct=%E6%A0%B8%E8%A3%82%E5%8F%98&ancestor=list&cmsid=a32b7e15027132eaf998a2d54fbefd3d&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=130&adstar=0&clw=246#id=ff01210e7b6734bca7cb819a771f8c4b&prevsn=130&currsn=190&ps=212&pc=60 原图链接][httphttps://www.nipictoutiao.com/showa6565793919555076366/3317755.html 图片来源于 呢图 头条 网]]] 
原子核裂变时发射出来的中子分瞬发中子和缓发中子两类,瞬发中子占绝大部分,其中主要又是从碎片蒸发出来的;缓发中子只占很小的份额(千分之几)。
1、 瞬发中子的能量分布很宽,从零一直延伸到15MeV左右,主要部分在0.1~5MeV区域。其能谱可用麦克斯韦谱来近似描述,即:式中TM是 [[ 麦克斯韦 ]] 分布的一个参量,等于中子平均能量的倍。铀-235热中子裂变的裂变中子谱的峰在0.8MeV附近,平均能量在2MeV左右。缓发中子也具有连续能谱,其平均能量在1MeV以下。
即使是同样的核在同样条件下裂变,每次裂变事件发射的中子数也不固定。有的不发射中子,多数发射两三个中子,最多可有七八个。其平均值(不是整数)称为平均裂变中子数尌。当裂变核的激发能增加时,尌随之增加;一般地说,在裂变核的原子序数或质量数增加时,尌也随之增大。尌的大小,对链式反应装置的临界条件起关键作用(见裂变反应堆)。
②裂变是一个极复杂的核过程,研究这一过程有助于原子核物理学的发展。
在裂变发现后,很快就弄清楚了,裂变时不但释放出巨大的能量,而且同时还发射出几个中子。既然中子能引起裂变,裂变又产生更多的中子,因此可以通过链式反应(见裂变反应堆)在宏观尺度上使原子核释放出能量来。这就找到了大规模利用核能的途径。除了巨大的核能在军事和能源方面的实际应用之外,随着反应堆的建立,放射性 [[ 同位素 ]] 开始大规模生产并广泛应用于工农医等各部门。从发现衰变到掌握 [[ 原子能 ]] ,是20世纪科学史上的重要一页。
裂变是核的大形变集体运动的结果,弄清它的机制,了解裂变过程的各种复杂的现象,到仍然是一个需要继续努力研究的方向。因此对于核物理本身,裂变也具有很重要的意义。此外,自发裂变是决定最重的那些核素的稳定性的重要因素;裂变产物提供了大量的丰中子远离β稳定线的核素;裂变研究又提供了原子核在大形变条件下的各种特性(如变形核的壳效应)等等。所有这些都说明裂变是核物理的一个重要研究领域。
=='''主要应用'''==
[[File: 王振耀F9198618367adab479dcffca81d4b31c8701e42f.jpg|缩略图| 居中|250px300px|[httphttps://pic8image.nipicso.com/20100621/2163148_003328533247_2.jpg view?q=%E6%A0%B8%E8%A3%82%E5%8F%98&src=tab_www&correct=%E6%A0%B8%E8%A3%82%E5%8F%98&ancestor=list&cmsid=a32b7e15027132eaf998a2d54fbefd3d&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=130&adstar=0&clw=246#id=5c546ccb1fc7f8a0734810b0ee035177&prevsn=0&currsn=130&ps=152&pc=59 原图链接][httphttps://wwwbaike.nipicbaidu.com/showitem/3317755.html %E6%A0%B8%E8%A3%82%E5%8F%98%E5%92%8C%E6%A0%B8%E8%81%9A%E5%8F%98 图片来源于 呢图 百度 网]]] [[ 核电站 ]] 和原子弹是核裂变能的两大应用,两者机制上的差异主要在于链式反应速度是否受到控制。核电站的关键设备是核反应堆,它相当于 [[ 火电站 ]] 的锅炉,受控的链式反应就在这里进行。核反应堆有多种类型,
按引起裂变的 [[ 中子 ]] 能量可分为:热中子堆和快中子堆。热中子的能量在0.1eV(电子伏特)左右,快中子能量平均在2eV左右。运行的是热中子堆,其中需要有慢化剂,通过它的 [[ 原子 ]] 与中子碰撞,将快中子慢化为热中子。慢化剂用的是水、重水或 [[ 石墨 ]] 。堆内还有载出热量的冷却剂,冷却剂有 [[ ]] [[ 重水 ]] [[ ]] 等。根据慢化剂和冷却剂和燃料不同,热中子堆可分为轻水堆(用轻水作慢化剂和冷却剂稍加浓铀作燃料)、重水堆(用重水作慢化剂和冷却剂稍加浓铀作燃料)和石墨水冷堆(石墨慢化,轻水冷却,稍加浓铀),轻水堆又分压水堆和沸水堆。
=='''发展历程'''==
[[File: 王振耀BTeLRiKYeysmsR2M0yjfGY3=VXorBhTX8fEBkzzPcxfpJ1567916252706.jpg|缩略图| 居中|250px300px|[httphttps://pic8image.nipicso.com/20100621/2163148_003328533247_2.jpg view?q=%E6%A0%B8%E8%A3%82%E5%8F%98&src=tab_www&correct=%E6%A0%B8%E8%A3%82%E5%8F%98&ancestor=list&cmsid=a32b7e15027132eaf998a2d54fbefd3d&cmran=0&cmras=6&cn=0&gn=0&kn=50&fsn=130&adstar=0&clw=246#id=ae065e3a437f0ee5a93caae1a3699153&prevsn=130&currsn=190&ps=212&pc=60 原图链接][http://wwwdy.nipic163.com/showv2/article/3317755detail/EOI5TR6R0511WEF9.html 图片来源于 呢图 网易 网]]]核裂变是在1938年发现的,由于当时第二次世界大战的需要,核裂变被首先用于制造威力巨大的原子武器--原子弹。原子弹的巨大威力就是来自核裂变产生的巨大能量。人们除了将核裂变用于制造原子弹外,更努力研究利用核裂变产生的巨大能量为人类造福,让核裂变始终在人们的控制下进行,核电站就是这样的装置
1934 核裂变是在1938 ,E.费米等 发现的,由于当时[[第二次世界大战]]的需要,核裂变被首先用于制造威力巨大的原子武器--[[原子弹]]。原子弹的巨大威力就是来自核裂变产生的巨大能量。 们除了将核裂变 于制造原 照射铀 弹外 企图使铀 更努力研究利用 俘获中子 裂变产生的巨大能量为人类造福 再经过β衰 让核裂 得到原子序数为93或更高 始终在人们 超铀元素 控制下进行 [[核电站]]就是 引起了不少化学家 关注。 装置
1934年,E.费米等人用中子照射铀,企图使铀核俘获[[中子]],再经过β衰变得到原子序数为93或更高的超铀元素,这引起了不少化学家的关注。  1934~1938年间,许多人做了这种实验,但是不同的研究者得到了不同的结果,有的声称发现了 [[ 超铀 ]] 元素,有的却说得到了镭和锕。
1938年,O.哈恩和F.斯特拉斯曼做了一系列严格的化学实验来鉴别这些放射性产物,结论是:所谓的镭和锕实际上是原子量远比它们为小的镧和钡。对这种现象,只有假设原子核分裂为两个或两个以上的碎块才能给予解释。这种分裂过程被称为裂变。
1939年L.迈特纳和O.R.弗里施首先建议用带电液滴的分裂来解释裂变现象。同年N.玻尔和J.A.惠勒在原子核液滴模型和统计理论的基础上系统地研究了 [[ 原子核 ]] 的裂变过程,奠定了裂变理论的基础。<ref>[http://ent.sina.com.cn/y/2008-05-22/15342033661.shhttp://www.caep.ac.cn/hwkp/hwzs/10124.shtmltml 核裂变的解释],中国工程物理研究院网,2011-10-28</ref>
1940年,K.A.彼得扎克和Γ.Η.弗廖罗夫观察到铀核会自行发生裂变,从而发现了一种新的放射性衰变方式──自发裂变。
1947年,钱三强等发现了三分裂(即分成三个碎片,第三个可以是 [[ α粒子 ]] ,也可以是和另外两个碎片质量相近的碎片)。
1955年,A.玻尔根据原子核的集体模型提出了裂变道的概念,把裂变理论推进了一步。1962年,С.М.波利卡诺夫等发现了自发裂变同质异能态。
1967年,B.M.斯特鲁金斯基提出了在液滴模型基础上加壳修正的 "宏观-微观"方法,导出了双峰裂变势垒,这是裂变研究史上的又一新成果。
 
=='''相关视频'''==
1、一分钟看懂核裂变和核聚变区别
 
{{#ev:youku|XNDIyOTcyOTM0NA|440|inline|一分钟看懂核裂变和核聚变区别 |frame}}<div style="float:right; margin:-10px 0 0 20px;">
2、铀矿石如何变成核燃料? 如何控制核裂变反应?
 
{{#ev:youku|XMzY5MjAxNDQyNA|440|inline|铀矿石如何变成核燃料? 如何控制核裂变反应? |frame}}</div>
 
== '''外部連結''' ==
 
*[http://www.docin.com/p-741887229.html  发现原子核裂变的故事]
=='''参考资料'''==
 
[[Category:330 物理學總論]]
10,734
次編輯