求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

流量表查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索

来自 搜狐网 的图片

流量表是一个科技名词。

中国文字是历史上最古老的文字之一[1]。也是至今通行的世界上最古老的文字。世界上还没有任何一种文字像汉字这样经久不衰。 从甲骨文发展到今天的汉字,已经有数千年的历史。文字的发展经过了甲骨文、金文、大篆、小篆、隶书[2]、草书、楷书、行书等书体演变。

名词解释

流量表又称为流量计,测量液体的瞬时流量和累计体积总量,也可以对液体定量控制。具有精度高寿命长操作维护简单等特点。主要应用于工业生产过程,能源计量,环境保护工程,交通运输, 生物技术, 科学实验, 海洋气象,江河湖泊等领域。

常用流量表工作原理

电磁流量计

电磁流量计的工作原理是基于法拉第电磁感应定律。在电磁流量计中,测量管内的导电介质相当于法拉第试验中的导电金属杆,上下两端的两个电磁线圈产生恒定磁场。当有导电介质流过时,则会产生感应电压(工作原理如下图所示)。管道内部的两个电极测量产生的感应电压。测量管道通过不导电的内衬(橡胶,特氟隆等)实现与流体和测量电极的电磁隔离。传感器主要组成部分是:测量管、电极、励磁线圈、铁芯与磁轭壳体。它主要用于测量封闭管道中的导电液体和浆液中的体积流量。包括酸、碱、盐等强腐蚀性的液体。该产品广泛应用于石油、化工、冶金、纺织、食品、制药、造纸等行业以及环保、市政管理,水利建设等领域。

转子流量计

转子流量计由两个部件组成,转子流量计一件是从下向上逐渐扩大的锥形管;转子流量计另一件是置于锥形管中且可以沿管的中心线上下自由移动的转子。转子流量计当测量流体的流量时,被测流体从锥形管下端流入,流体的流动冲击着转子,并对它产生一个作用力(这个力的大小随流量大小而变化);当流量足够大时,所产生的作用力将转子托起,并使之升高。同时,被测流体流经转子与锥形管壁间的环形断面,这时作用在转子上的力有三个:流体对转子的动压力、转子在流体中的浮力和转子自身的重力。 流量计垂直安装时,转子重心与锥管管轴会相重合,作用在转子上的三个力都沿平行于管轴的方向。当这三个力达到平衡时,转子就平稳地浮在锥管内某一位置上。对于给定的转子流量计,转子大小和形状己经确定,因此它在流体中的浮力和自身重力都是已知是常量,唯有流体对浮子的动压力是随来流流速的大小而变化的。因此当来流流速变大或变小时,转子将作向上或向下的移动,相应位置的流动截面积也发生变化,直到流速变成平衡时对应的速度,转子就在新的位置上稳定。对于一台给定的转子流量计,转子在锥管中的位置与流体流经锥管的流量的大小成一一对应关系。

为了使转子在在锥形管的中心线上下移动时不碰到管壁,通常采用两种方法:一种是在转子中心装有一根导向芯棒,以保持转子在锥形管的中心线作上下运动,另一种是在转子圆盘边缘开有一道道斜槽,当流体自下而上流过转子时,一面绕过转子,同时又穿过斜槽产生一反推力,使转子绕中心线不停地旋转,就可保持转子在工作时不致碰到管壁。转子流量计的转子材料可用不锈钢、铝、青铜等制成。

超声波流量计

超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。超声波流量计的电子线路包括发射、接收、信号处理和显示电路。测得的瞬时流量和累积流量值用数字量或模拟量显示。超声波流量计按测量原理分类有:①传播时间法;②多普勒效应法;③波束偏移法;④相关法;⑤噪声法。

涡街流量计

涡街流量计是利用流体力学中著名的卡门涡街原理,即在流动的流体中插入一个非流线型断面的柱体,流体流动受到影响,在一定的雷诺数范围内将在柱体下游,均要产生漩涡分离。漩涡分离频率,即单位时间内由柱体一侧分离的漩涡数目f与流体速度V1成正比,与柱体迎流面的宽度d成反比,即:

式中:

f—漩涡分离频率;

Sr—斯特劳哈尔数(无量纲),对于一定柱型在一定流量范围内是雷诺数的函数;

V1—漩涡发生体两侧的流速,m/s;

d—漩涡发生体迎流宽。

涡街流量计由壳体、漩涡发生体和放大器组成。一种典型的结构如图2所示,壳体内插入柱体,由其产生的涡街信号可用各种检测方式检出,经放大器放大后,输出脉冲信号。

质量流量计

科氏质量流量计是一种用于直接测量质量流量的流量计,它在原理上消除了温度、压力流体状态、密度等参数的变化对测量精度的影响,可以适应气体、液体、两相流、高黏度流体和糊状介质的测量。一台质量流量计的计量系统包括一台传感器和一台用于信号处理的变送器。Rosemount质量流量计依据牛顿第二定律:力=质量×加速度(F=ma),当质量为m的质点以速度V在对P轴作角速度ω旋转的管道内移动时,质点受两个分量的加速度及其力:

(1)法向加速度,即向心加速度αr,其量值等于2ωr,朝向P轴;

(2)切向角速度αt,即科里奥利加速度,其值等于2ωV,方向与αr垂直。由于复合运动,在质点的αt方向上作用着科里奥利力Fc=2ωVm,管道对质点作用着一个反向力-Fc=-2ωVm。

当密度为ρ的流体在旋转管道中以恒定速度V流动时,任何一段长度Δx的管道将受到一个切向科里奥利力ΔFc: ΔFc=2ωVρAΔx

式中,A-管道的流通截面积。

由于存在关系式:mq=ρVA

所以:ΔFc =2ωqmΔx

因此,直接或间接测量在旋转管中流 动流体的科里奥利力就可以测得质量流量 。

流量表分类

电磁按激磁方式分类:直流励磁;交流励磁;低频方波励磁,要产生一个均匀恒定的磁场,就需要选择一种合适的励磁方式。如按励磁电流方式划分,有直流励磁、交流(工频或其他频率)励磁、低频矩形波励磁和双频矩形波励磁。

1.直流励磁:直流励磁方式用直流电或采用永久磁铁产生一个恒定的均匀磁场。这种直流励磁变送器的最大优点是受交流电磁场干扰影响很小,因而可以忽略液体中的自感现象的影响。但是使用直流磁场易使通过测量管道的电解质液体被极化,即电解质在电场中被电解,产生正负离子,在电场力的作用下,负离子跑向正极,正离子跑向负极,这将导致正负电极分别被相反极性的离子所包围,严重影响仪表的正常工作。所以,直流励磁一般只用于测量非电解质液体,如液态金属流量(常温下的汞和高温下的液态钢、锂、钾)等。

2.交流励磁:工业上使用的电磁流量表,大都采用工频(50Hz)电源交流励磁方式产生交变磁场,避免了直流励磁电极表面的极化干扰。但是用交流励磁会带来一系列的电磁干扰问题(例如正交干扰、同相干扰、零点漂移等)。现在交流励磁正在被低频方波励磁所代替。

3. 低频方波励磁:低频方波励磁波形有二值(正-负)和三值(正-零-负-零)两种,其频率通常为工频的1/2~1/32。低频方波励磁能避免交流磁场的正交电磁干扰,消除由分布电容引起的工频干扰,抑制交流磁场在管壁和流体内部引起的电涡流,排除直流励磁的极化现象。

参考文献